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I Some element of context

The simplest framework of our investigations in this presentation could be formulated as follows : study
area variations among maps u from an oriented 2-manifold Σ into C2 under the Lagrangian constraint

u∗ω = 0 , (I.1)

where ω is the standard symplectic form ω = dy1 ∧ dy2 + dy3 ∧ dy4. More precisely we ask ourselves how
to implement variational operations (minimization under various constraints, minmax) for the standard
area Lagrangian

A(u) :=

∫
Σ

|∂x1
u ∧ ∂x2

u| dx1 ∧ dx2

among maps satisfying the pointwise constraint1

du1 ∧ du2 + du3 ∧ du4 = 0 .

The Lagrangian A is notoriously known in calculus of variations to be delicate to work with (due mostly
to the very large invariance group in the domain : the “gauge group” of diffeomorphisms of the surface
Σ). In order to “break” this invariance and reduce the gauge group to a finite dimensional one, it is
preferable instead to consider the Dirichlet Energy of the map u for a variable metric g of Σ

E(u, g) :=
1

2

∫
Σ

|du|2g dvolg ≥ A(u) . (I.2)

with equality if and only if u is conformal with respect to the metric g that is in isothermic or conformal
coordinates such that g = e2λ [dx21 + dx22] there holds

|∂x1u|2 = |∂x2u|2 and ∂x1u · ∂x2u = 0 (I.3)

1In case u is a graph u(x1, x2) = (x1, x2, v(x1, x2)) the constraint (I.1) is equivalent to the incompressibility condition

det(∇v) = −1 .
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where · denotes the standard scalar product in C2. Stationary critical points for fixed g have an holo-
morphic Hopf differential

H(u) := ∂zu · ∂zu dz ⊗ dz

while making g vary simultaneously in the Moduli space of constant Gauss curvature metrics is known
to imply H(u) = 0 and equality holds in (I.2). Hence critical points of E(u, g) are critical points of the
area.

Assuming u is a conformal critical point of the Dirichlet energy under the Lagrangian constraint, in
local conformal coordinates, the Euler Lagrange Equation of our constrained variational problem is given
by

0 =
d

dt
E(u+ tψ, g)

∣∣∣∣
t=0

=

∫
Σ

du ·g dψ dvolg (I.4)

for any ψ satisfying

dψ1 ∧ du2 + dψ3 ∧ du4 + du1 ∧ dψ2 + du3 ∧ dψ4 = 0 ⇐⇒ d [ψ · idu] = 0

Hence ψ is an admissible infinitesimal perturbation for the Lagrangian constraint if and only if there
exists locally an Hamiltonian function h such that

ψ · idu = dh

Recall that a 2-plane L is Lagrangian (i.e. the restriction of the symplectic form ω on L is zero) if and
only if the multiplication by i realizes an isometry2 between L and the 2-plane orthogonal to L. Assuming
u is locally an conformal Lagrangian immersion we deduce that

e−λ (∂x1u, ∂x2u, i ∂x1u, i ∂x2u) is an orthonormal basis of C2 where eλ = |∂x1u| = |∂x2u| .

Hence ψ is an admissible variation if and only if there exists an hamiltonian function h ad two functions
a ad b such that

ψ = e−2λ [∂x1h i∂x1u+ ∂x2h i∂x2u+ a ∂x1u+ b ∂x2u]

ad we deduce the following expression of the Euler Lagrange equation for a conformal Lagrangian im-
mersion

∀h ∈ C1(Σ)

∫
Σ

(∂x1
h ∂x1

u · i∆u+ ∂x2
h ∂x2

u · i∆u) |∇u|−2 dx2 = 0

which is also equivalent to
div

[
|∇u|−2 ∇u · i∆u

]
= 0

We deduce that the equation is a 3rd order equation. It has been derived under very strong regularity
and non degeneracy assumptions on u and obviously does not make sense for an arbitrary u ∈W 1,2(Σ,C2).
An alternative formulation which is this time compatible with the sole assumption that u is in W 1,2 and
weakly conformal is derived in [7] and reads

div (g∇u) = 0

div
(
g−1 ∇g

)
= 0 ,

(I.5)

2Being Lagrangian for a 2-plane is in a sense the opposite of being holomorphic in which case the multiplication by i
realizes an isometry from L into itself.
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where g = eiβ is an S1 valued map3 which is the Lagrange multiplier associated to the Lagrangian
pointwise constraint (I.1). We call this system the Conformal Hamiltonian Stationary System. The first
equation is a structural equation shared by any conformal parametrization of any Lagrangian surface in
C2 while the second one is the Euler Lagrange equation itself. It is saying that the Lagrange multiplier g
is an S1 harmonic map. These equations are obviously calling upon the use of classical elliptic theory for
solving regularity or existence questions. The difficulty however is that there is a-priori no information
on the function space to which g belongs to in order to start implementing this theory. In fact one can
construct very “pathological” solutions to (I.5) with respect to regularity.

Theorem I.1. [7] For any 1 ≤ p < 2 there exists (u, g) ∈ W 1,p(D2,C2) ×W 1,p(D2, S1) solution to the
Conformal Hamiltonian Stationary System

div(g∇u) = 0 in D′(D2)

|∂x1u|2 = |∂x2u|2 a. e. in D2

∂x1
u · ∂x2

u = 0 a. e. in D2

div
[
g−1 ∇g

]
= 0 in D′(D2)

(I.6)

and u as well as g are nowhere continuous. 2

This result is suggesting that questions regarding existence and regularity cannot be settled at the
strictly “PDE level” whose formulation even is problematic. Indeed in order to give a distributional
meaning to (I.5) one needs at least an assumption like g is in W 1,1 or H1/2. This is certainly an
interesting elliptic PDE problem by itself worth to be studied but somehow artificial though since these
assumptions are not given a-priori by any variational operation we are aiming at doing.

Having exclusively a functional analysis approach to the system (I.5) and to the variation of the
area under Lagrangian constraints is insufficient for answering natural analysis questions regarding this
problem. In the next subsection we consider this variational problem from a more geometric perspective
in order to collect useful informations.

I.1 Hamiltonian and Lagrangian Stationary Immersions

A Kähler surface is a complex two dimensional manifold (M2, J) with a compatible4 symplectic form
ω. Lagrangian sub-manifolds are the ones on which the restriction of the symplectic form vanishes. In
particular, Lagrangian sub-manifolds are the ones for which the complex structure realizes an isometry
between the tangent and the normal spaces at every points.

The study of area variations under Lagrangian constraints has been initiated in a series of work by
Yong-Geun Oh ([15], [16]). He proposed to minimize the area under the Lagrangian constraint within

3The uni-valued map eiβ plays the rôle of a Lagrange multiplier issued from the incompressibility constraint similarly
as the rôle played by the “pressure” in the variational formulation of Euler equations. The parallel between the Lagrangian
and the incompressibility constraint is maybe more obvious while considering the particular case of a graph

u(x1, x2) := (x1, x2, w(x1, x2))

where w : Σ → R2. We have
u∗ω = 0 ⇐⇒ det(∇w) = −1

4A symplectic form is said to be compatible with a complex or with an almost complex structure J if g(X,Y ) := ω(X, JY )
defines a riemannian metric.
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a Lagrangian homology class with the objective to obtain in this way very special representative of
these classes. He called the sub-manifolds critical points of the area within Lagrangian sub-manifolds
hamiltonian stationary for sub-manifolds which are critical points under “local” Lagrangian deformations5

only which are given by hamiltonian vector-fields of the form

J ∇h . (I.7)

where h is an arbitrary compactly supported function in M2. A Lagrangian immersion u is then Hamil-
tonian stationary (or H-minimal) if

∀h ∈ C1(M)

∫
Σ

J ∇Σh · H⃗u dvolgu = 0 , (I.8)

where H⃗ is the mean curvature vector of the immersion u. This implies that the contraction of the mean
curvature vector H⃗u with the Kähler form

ω H⃗u = αH⃗

defines an harmonic one form of the sub-manifold Σ. Such surfaces are also called Hamiltonian minimal
or simply H−minimal surfaces. These pioneered works on the subject contain very interesting and
now classical conjectures in the field about possible volume minimizing candidates under hamiltonian
deformations within C2 or CP 2.

Y.-G. Oh computed in particular the Euler Lagrange equations associated to this variational problem.
In the special case of Kähler-Einstein manifolds (satisfying Ric(g) = λ g), it has been discovered by Dazor
[6] that the mean curvature of a Lagrangian surface Σ is given by

H⃗ := J ∇Σβ ,

where β is a locally well defined function on Σ and ∇Σ is the gradient of β for the induced metric on Σ.
In the particular case when the manifold is Ricci flat ( which implies that M2 is Calabi Yau), if Ω is a
normalized global holomorphic section of the canonical bundle K := ∧2,0M the function β is given by

eiβι∗ΣΩ = dvolg

where ιΣ is the canonical embedding of Σ in M2. Hence β is a globally well defined function in R/2πZ
and is called Lagrangian angle. For general Kähler-Einstein manifolds β is still a well defined function in
R/2πZ in case the induced canonical connection of the restriction to Σ of the canonical bundle ι∗ΣK of
M2 (which is flat) has no monodromy (see [29]). In the M2 := C2 case that we were considering in the
first section, for any Lagrangian immersion u from Σ into C2, the map g := eiβ satisfies

ιΣ [dz1 ∧ dz2] = g−1 |∂x1
u ∧ ∂x2

u| dx1 ∧ dx2 .

In the case where u is Hamiltonian stationary (i.e. u satisfies (I.4)), the map g is the one in (I.5).
Observe now that for general Kähler-Einstein Target M2 the Hamiltonian stationarity condition (I.8)

is becoming

∀h ∈ C1(M)

∫
Σ

∇Σh · ∇Σβ dvolΣ = 0 . (I.9)

This is equivalent to the fact that locally
∆Σβ = 0 , (I.10)

5A slightly more restrictive condition is allowing for more deformations. A Lagrangian immersion is called Lagrangian
stationary when it is a critical point of the area for area deformations of the form JY where Y is a vector-field associated
to a closed form which is not necessarily exact.
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which is nothing but the second equation in (I.5) in the M2 = C2 case.
In the particular case when β is a globally univalued function then, for a compact surface Σ, the

harmonic function equation (I.10) is implying β = β0 and the Euler-Lagrange equation is simply the

minimal surface equation H⃗ = 0. Such a sub-manifold is called minimal lagrangian (This holds in
particular if the immersion is Lagrangian stationary and not only Hamiltonian stationary. If this is the
case the infinitesimal perturbation J∇Σβ is admissible and one gets ∇Σβ ≡ 0.) . If the Kähler-Einstein
manifolds is Ricci flat then any minimal lagrangian sub-manifold is calibrated by eiβ0 Ω and and realizes
in this way an absolute minimizer6 in it’s homology class (see [8]). While it is a very interesting object
of research with numerous applications in geometry (and in high energy physics7) in general there are
no reasons why dβ should be equal to zero and the general hamiltonian stationary equation in Kähler-
Einstein Manifold is the 3rd order equation8. It is interesting to observe that, while having dβ being
harmonic we have a “finite dimensional perturbation” of β = β0 but nevertheless H-minimal surfaces
have very different features. For instance there exists closed H−minimal surfaces in C2 (the Clifford
torus S1 × S1 ⊂ C × C is an example of such a surface9) while the existence of closed minimal surfaces
is prevented by the maximum principle.

To end this section on the interplay between the Lagrangian constraint and the area variations,
we would like to briefly mention the Lagrangian Mean Curvature Flow without really giving justice to
the importance of this geometric analysis object. It has been discovered by Knut Smoczyk [25] that
the classical Mean Curvature Flow is preserving the Lagrangian constraint in Kähler Einstein manifolds.
Since this discovery, numerous works have been devoted to the mean curvature flow applied to Lagrangian
surfaces in particular in a Calabi-Yau manifold ([12], [13], [14]...) where the Lagrangian angle function
exists and for which the Lagrangian Mean Curvature flow takes the elegant formulation

∂β

∂t
+∆Σβ = 0 .

These works are partly motivated by the Thomas Yau Conjecture about the existence of a “stability con-
dition”10 for the characterisation of Hamiltonian Isotopy classes by a minimal Lagrangian representatives
(see [27], [28]).

II The Schoen Wolfson existence and regularity result

In a breakthrough paper [23], Rick Schoen and Jon Wolfson performed the very first variational construc-
tion of minimizing stationary Lagrangian surfaces in lagrangian homology classes11 of Kähler Einstein
surfaces . Their original motivation was to realize any Lagrangian homology class of a Kähler Einstein
surface by a sum of Lagrangian minimal branched immersions. In case the Kähler Einstein surface would
be Ricci Flat (i.e. Calabi Yau) this is implying that these surfaces are calibrated and these homology

6The local stability of arbitrary minimal lagrangian sub-manifolds generalizes to the situation of general Kähler-Einstein
manifolds of non positive Ricci. This being said we will be interested in the other case in the present work that is Ric(g) > 0.

7Minimal Lagrangian submanifolds of Calabi Yau 3 and 4-folds appear in string theory under the name of ”super-
symmetric cycle” and they play a key role in the Strominger Yau Zaslow theory of mirror symmetry.

8The equation is second order with respect to the multivalued Lagrangian angle function β but the expression of dβ
involves 2 derivatives with respect to the Lagrangian immersion.

9One of the Oh conjecture says that this torus should be minimizing in it’s Hamiltonian isotopy class : The class of tori
which can be obtained through hamiltonian deformations that is deformations which infinitesimally are given by (I.7) (see
[15]).

10A classical stability condition in algebraic geometry is the one for the so called Hitchin-Kobayachi correspondence
between holomorphic structures over a Kähler Manifold and solutions to the Hermitian Yang-Mills equation.

11Lagrangian homology classes are elements in H2(M,Z) that can be realized by integral Lagrangian cycles. It is proved
in [23] that this is simply equivalent to

[ω](α) = 0 .
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classes would have then been realised by very rigid objects called Special Lagrangian cycles. This project
bumped into the discovery by Schoen and Wolfson of a new type of singularities. The two authors proved
that area minimizing lagrangian stationary surfaces are branched immersions with possible isolated “con-
ical” singularities. Precisely the following result holds.

Theorem II.1. [23] Let (M,ω, J) be a Kähler Einstein surface. Every Lagrangian homology class in
α ∈ H2(M,Z) can be represented by the Lagrangian Lipschitz image by a map u of a closed surface Σ.
The map u is a branched Lagrangian smooth Hamiltonian stationary (i.e. H−minimal) immersion away
from isolated singularities (ak)k∈K at which the associated Lagrangian angle function g satisfies

∗ d
[
g−1 dg

]
=

∑
k∈K

dk δak
in D′(Σ) ,

where dk = ±1 and K is a finite set that can be empty. In particular∑
k∈K

dk = 2−1 c1(M)(α)

where c1(M) is the first Chern Class of M . If c1(M)(α) = 0 and K = ∅ then u is a minimal Lagrangian
branched immersion and if in addition to K = ∅ we havee that M2 is Calabi Yau (c1(M) = 0) the current
u∗[Σ] is Special Lagrangian. 2

The proof of theorem II.1 is based on the following regularity result for W 1,2−Lagrangian minimizing
maps.

Theorem II.2. Let u ∈W 1,2(D2,C2), satisfying the following three conditions

i) Weakly Lagrangian :
u∗ω = 0

ii) Weakly Conformal :
|∂x1

u|2 = |∂x2
u|2 and ∂x1

u · ∂x2
u = 0

iii) Locally minimizing :

∀ Br(x) ⊂ D2 ∀v ∈W 1,2(D2,C2) s. t. v∗ω = 0 and v = u on ∂Br(x)

then

∫
Br(x)

|∇v|2 dx2 ≥
∫
Br(x)

|∇u|2 dx2

Then u is a possibly branched smooth H-minimal immersion away from isolated conical point singularities.
There exists a map g

⋂
p<2W

1,p(D2,C2) such that
div (g∇u) = 0

div
(
g−1 ∇g

)
= 0 ,

and there exists isolated points (ak)k∈K in the disc D2 such that12

curl(g−1 ∇g) = 2π i
∑
k∈K

dk δak
in D′(D2) .

2

12The fact that the points ak are isolated is implying that for any open subset ω ⊂ D2 with ω ⊂ D2, ω must contain
at most finitely many ak and, while K is a-priori not necessarily finite, the sum

∑
k∈K dk δak nevertheless makes sense in

D′(D2).
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III The Schoen Wolfson Conical Singularities

In fact these conical singularities are proved to exist for some Lagrangian homology classes α (see [11]
and [30]) in some Kähler-Einstein surfaces even if c1(M)(α) = 0. This last fact is a surprise and is one
of the reasons why the variational analysis of Lagrangian surfaces, even in the lowest co-dimension 2, is
particularly involved.

The explicit form of the conical singularities is fully given in [23]. It can be observed that, unlike for
the branched points, at these singularities the Gauss map13 is not continuous. This stands in contrast
with classical stationary surfaces for the area (or minimal surfaces) in C2 which can degenerate only at
branched points at which the Gauss map is still continuous. These isolated point singularities discovered
by Schoen and Wolfson are asymptotically given by cones parametrized by maps of the form

up,q : D2 → C2, (r, θ) 7→ r
√
pq

√
p+ q

( √
qeipθ

i
√
pe−iqθ

)
. (III.1)

called nowadays Schoen–Wolfson cones. A careful analysis of this expression shows that the pullback by
the Gauss map, taking values into the Lagrangian Grassmann manifold Λ(2), of the generatorH1(Λ(2),Z)
realizes a non trivial element in H1(D2 \ {0},Z) called Maslov index 14 (see for instance [3]). Some of
these cones, the ones for which p− q = ±1, are shown in [23] to be stable with respect to area variations
under the pointwise Lagrangian constraint (I.1). While we have seen that the presence of Schoen-Wolfson
conical singularities cannot be excluded even in the case even if c1(M)(α) = 0 where the sum of their
Maslov indices is zero, a question naturally emerged :

is there any restriction on the location of the Schoen–Wolfson conical singularities?

We are not able at this stage to give a satisfying answer to this question but an attempt has been made
for constructing surfaces (mostly discs) with isolated Schoen–Wolfson conical singularities for which the
location will be strongly correlated to the boundary data. Precisely we have the following result

Theorem III.1. Let (dk)k=1···N such that dk = ±1. Let ak be N distinct points in D2 and let G be the
Green’s function solution to 

∆G = 2π

N∑
k=1

dk δak
in D′(D2)

G = 0 on ∂D2 .

(III.2)

Assume each of the connected components of G ̸= 0 is a disc containing exactly one ak. Let ψ ∈
C1(∂D2,C). Then there exists a solution

(u, g) ∈
⋂
p<2

W 1,p(D2,C2)×W 1,p(D2, S1)

smooth away from the ak of the Hamiltonian Stationary Equation

div(g∇u) = 0 in D2

u1 + i u2 = ϕ in ∂D2

div
[
g−1 ∇g

]
= 0 in D2

g−1 ∂rg = 0 in ∂D2 .

(III.3)

13The Gauss map is the map which assigns at every point the oriented tangent 2-plane. This is a map from Σ into the 3
dimensional Lagrangian Grassmanian Λ(2) ≃ U(2)/O(2), sub-manifold of the Grassmann manifold G2(R4) ≃ CP 1 × CP 1

14The Maslov Index of the cone III.1 is p− q. This is exactly the degree of the Lagrangian angle map around the origin.
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with
g−1∇g = i∇⊥G .

where ∇⊥G := (−∂x2
G, ∂x1

G). Moreover u is conformal on D2 and on each connected component ω of
G ̸= 0 and there exists ũ ∈W 1,2(ω,C2) and Aω ∈ C such that

u = ũ+Aω g . (III.4)

This solution (u, g) is unique in this class moreover ũ ∈ C1,
√
2−1(D2). There exists a sub-space of

co-dimension at most N of ϕ ∈ H1/2(∂D2,C) such that u has finite area (i.e. ∀ω Aω = 0 and ũ =
u) and realizes an Hamiltonian Stationary Conformal Immersion with isolated Schoen–Wolfson conical
Singularities of Maslov degree dk at the ak. 2

Remark III.1. In the cases N = 1, 2 we are able to prove that the subspace of ϕ ∈ H1/2(∂D2,C) such
that u has finite area has exactly co-dimension 2. 2

Here is a list of natural open problems that come out of the statement of theorem III.1.

Some open questions

• Can Theorem III.1 be generalised to construct Hamiltonian stationary Lagrangian discs with pre-
scribed Schoen–Wolfson singularities in Calabi-Yau surfaces?

• It would be interesting to investigate the same question for closed surfaces: can one construct
closed Hamiltonian stationary surfaces (in C2, in Calabi-Yau manifolds or even in Kähler–Einstein
manifolds) with isolated Schoen–Wolfson singularities? Closed Hamiltonian stationary surfaces have
been constructed, among others, by I. Castro and F. Urbano [5], F. Hélein and P. Romon [10, 9],
H. Anciaux [2], but in all cases they construct branched immersions without cone singularities.

• Does there exist complete Hamiltonian Stationary planes in C2 with isolated singularities beside the
Schoen–Wolfson cones (III.1)? If yes, are they stable with respect to Hamiltonian deformations?

• Is the sufficient condition on G given by theorem III.1 necessary for the existence of finite area
Hamiltonian Stationary discs in C2 with ±1 Schoen–Wolfson cones? Is there some notion of renor-
malized energy in the style of the Ginzburg–Landau renormalized energy governing the location of
the singular Schoen Wolfson cones ?

• Is there a counterpart to theorem III.1 for higher multiplicities (|dk| > 1)?

• Is it possible to construct Hamiltonian stationary Lagrangian discs with locally finite area but
infinitely many Schoen–Wolson singularities accumulating at the boundary?

IV The Monotonicity Formula and the need to “lift” to Legen-
drian immersions

The starting point for performing Schoen Wolfson analysis is the search of a monotonicity formula.
Conserved quantities and monotonicity formula, which are integrated versions of conservation laws, are
fundamental notions in the calculus of variations. These identities are reflecting the existence of groups of
symmetries of the underlying Lagrangian most of the time in locally isotropic spaces. The most illustrative
example is maybe the monotonicity formula for minimal immersion of a surfaces in a Euclidian space Rn.
This identity says the following: let u be a minimal immersion of a surface Σ without boundary into Rn,
then the following conservation law holds

∀ r > 0
1

r2

∫
ρ(u)<r

dvolu∗gRn =

∫
ρ(u)<r

|(∇ρ)⊥|2

ρ(u)2
dvolu∗gRn + θ0 (IV.1)
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where ρ is the distance function to the origin of the space, dvolΣ denotes the volume form on Σ induced
by the immersion Φ , (∇Σρ)⊥ is the projection to the normal co-dimension 2 plane to the immersion of
the gradient of ρ and

θ0 := πCard
(
u−1(0)

)
where Card

(
u−1(0)

)
is the number of pre-images of the origin 0 by the immersion u (see for instance

[24]). In particular we obtain

d

dr

[
1

r2

∫
|u|<r

dvolu∗gRn

]
≥ 0 . (IV.2)

This formula which holds as well for much weaker mathematical objects critical point of the area than
minimal immersions (such as stationary varifolds for instance) is the starting point for the analysis of the
variation of the area in euclidian or even Riemannian spaces.

At this point Schoen and Wolfson made the following crucial observation that such a monotonicity
formula is not true in C2 for H−minimal surfaces in general (even minimizing !). They give an explicit
simple counter-example in [22] (section 4). It can be described as follows consider the sequence of maps
from the cylinders Σ := S1 × [−1/ε,+1/ε] into C2 given by

uε(e
iθ, t) := (ε cos θ, ε sin θ, ε t, 0)

It is obviously a conformal Lagrangian immersion for the canonical metric g = dθ2 + dt2 on Σ :=
S1 × [−1/ε,+1/ε], moreover it satisfies

∂

∂θ

[
e−iθ ∂u

∂θ

]
+
∂

∂t

[
e−iθ ∂u

∂t

]
= 0

Hence u is H−minimal with Lagrangian angle function eiβ = e−i θ which satisfies the S1−harmonic
equation

−
[
∂2

∂θ2
+
∂2

∂t2

]
(e−iθ) = e−i θ

[∣∣∣∣∂e−iθ

∂θ

∣∣∣∣2 + ∣∣∣∣∂e−iθ

∂t

∣∣∣∣2
]
.

We have ∫
|u|<1

dvolu∗gC2
= O(ε) and (2 ε)−2

∫
|u|<2 ε

dvolu∗gC2
≥ π

√
3 .

This contradicts obviously the monotonicity (IV.2).
The existence of such a counter-example could be explained by the fact that the generator of dilation15

in C2 is not hamiltonian :
y1 ∂y1

+ y2 ∂y2
+ y3 ∂y3

+ y4 ∂y4
̸= i∇h

The major observation made by Schoen and Wolfson is that by adding the Legendrian coordinate (if it
locally exists) this problem can be overcome. If u is Lagrangian in C2 there holds

d(u1 du2 − u2 du1 + u3 du4 − u4 du3) = 0

and one introduces the local Legendrian coordinate

dφu := u1 du2 − u2 du1 + u3 du4 − u4 du3 .

In R5 one introduce the form

α := −dφ+ y1 dy2 − y2 dy1 + y3 dy4 − y4 dy3

15The existence of monotonicity formula, which is a conservation law, is intimately linked to the existence of infinitesimal
isotropy of the space (see [1]) and technically in general is obtained by considering the variation of the surface with respect
to the generator of dilations “exploring” this isotropy.
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If u is Lagrangian the map v := (φu, u1, u2, u3, u4) is cancelling the form α which is non integrable
α∧ dα∧ dα ̸= 0. The map v is called Legendrian. Infinitesimal variations among Legendrian maps in R5

are given by Hamiltonian vector fields in the contact space (R5, α) of the form

X⃗ := JH ∇Hh− 2h ∂φ . (IV.3)

where H is the 4-plane given by the kernel of α, ∇H is the projection on H of the gradient in R5

with respect to the metric such that π∗, the differential of the canonical projection π(φ, y1, y2, y3, y4) =
(y1, y2, y3, y4) from H into C2, realizes an isometry and the length of ∂φ is 1. R5 equipped with this metric
is defining the Heisenberg group H2. Finally JH is the complex structure on H such that it projects by π∗
onto the standard complex structure of C2. The authors in this work introduce the notion of H−minimal
Legendrian for the immersion which are critical point of the area with respect to all infinitesimal variations
generated by Hamiltonian vector fields in R5 of the form (IV.3). One then observe

u = π ◦ v is H-Minimal in C2 ⇐⇒ v is H-Minimal Legendrian in (R5, α) .

Testing h = −φ produces the generator of dilations in C2 plus dilations in the 5th Legendrian direction
but with a different scale.

− i∇Hφ+ 2φ∂φ = y1 ∂y2
− y2 ∂y1

+ y3 ∂y4
− y4 ∂y3

+ 2φ∂φ .

This fact is an encouragement for looking for a monotonicity formula for H-Minimmal Legendrian surfaces.
However, as a matter of fact, it cannot be deduced from a simple insertion of this generator of the
dilation in the stationarity condition. The derivation of a monotonicity formula for H-Minimal Legendrian
immersions in (R5, α) proposed in [23], which is maybe one of the main achievement of this work, is quite
indirect and involved (going through the resolution of a wave equation, the use of Bessel functions...etc).
Another drawback is that the formula is semi-explicit.

Recently the author in [20] obtained a new monotonicity formula by inserting in the Legendrian
stationarity condition an explicit hamiltonian : h := χ(r) arctan(2φ/|y|2), where r is the Folland-Korányi
gauge given by r4 = |y|4 +2φ2 and χ is some well chosen cut-off function. Because of it’s explicit nature
the formula is a way more handful and is the starting point of the next section. Precisely the following
result holds.

Theorem IV.1. [Almost Monotonicity] There exists a universal constant C > 0 such that for any
smooth H-minimal Legendrian proper immersion v of an oriented surface Σ without boundary into H2,
we have ∀ r < 1

C−1

[
θ0 +

∫
r(v)<r/2

|(∇Σr)⊥|2

r2(v)
dvolv∗gH2

]
≤ 1

r2

∫
r(v)<r

dvolv∗gH2 ≤ C

∫
1/2<r(v)<2

dvolv∗gH2 , (IV.4)

where
θ0 := 2πCard v−1(0) ,

where r := (ρ4 + 4φ2)1/4 is the Folland-Korányi gauge and where (∇Σr)⊥ denotes the projection of the
gradient of the Folland-Korányi gauge onto the orthogonal 2-plane to the tangent space of the immersion
v within the horizontal plane H. 2

V Minmax Operation under Legendrian constraints

While the work of Schoen and Wolfson is mostly addressing existence and regularity questions for La-
grangian/legendrian minimizing maps, there are multiple reasons for considering Lagrangian/legendrian
surfaces critical points of the area with higher Hamiltonian Morse indices16 .

16The Hamiltonian Morse Index of an Hamiltonian Stationary Surface is the maximal dimension of the subspace of
Hamiltonian deformations on which the restriction of the second derivative of the Area is strictly negative (see for instance
[4])
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Let (N5, g) be a 5 dimensional oriented riemannian manifold and α a non degenerate 1−form on N5

(i.e. (N5, α) is contact) satisfying
α ∧ dα ∧ dα > 0 ,

The triple (N5, g, α) is called a Sasakian structure if the cone (N5 × R+, k := dt2 + t2g) with the non
degenerate symplectic form Ω := 2−1 d(t2 α) is Kähler. Let J be the compatible complex structure

(Ω(·, J ·) = g). The tangent vector field along N5 given by R⃗ := J(t∂t) is unit on N5 and is orthogonal
to the “horizontal hyperplanes” given by H = Ker(α). It is called Reeb Vector-field of the distribution
H. This distribution of plane is invariant under the action of J in N5 × R+ and we shall denote JH
it’s restriction on H. Such a structure is called Sasakian structure (see [26]). Classical examples are
the Heisenberg group H2, the unit sphere S5 for the Reeb vector-field tangent to the fibers of the Hopf
fibration into CP 2 or the Stiefel manifold V2(R4) ≃ S3 × S2 of orthonormal 2-frames in R4 for the Reeb
vector-field given by fibers of the tautological projection onto the Grassman manifold G2(R4) of 2-planes
in R4.

A Sasakian structure being given, we introduce the Sobolev space of Legendrian W 2,4 immersions of
a closed oriented surface Σ in N5

E2,4
Σ,Leg(Σ, N

5) :=
{
v ∈W 2,4(Σ, N5) ; |dv ∧̇ dv| > 0 and v∗α = 0 on Σ

}
.

It is proved in[21] that M := E2,4
Σ,Leg(Σ, N

5) has the structure of Banach manifold and posses a compatible
Finsler structure for which the associated Palais distance is complete.

An admissible family A in M is a set of subsets of M which is invariant under isotopies in M. The
min-max value or the “width” associated to such a family is the number given by

β := inf
A∈A

sup
v∈A

∫
Σ

dvolv .

The main result in [21] is asserting that any such min-max is achieved by a continuous conformal Leg-
endrian map from a closed riemann surface S into N5 equipped with an integer multiplicity bounded
in L∞ and satisfying a weak version of the H−minimal equation. Such a surface is called Legendrian
Hamiltonian stationary parametrized integer varifold. Precisely we have.

Theorem V.1. [21] Let A be an admissible family for the space of W 2,4 Legendrian immersions of a
closed oriented surface Σ into a closed Sasakian manifold (N5, g, α). Assume that the associated width is
strictly positive

β := inf
A∈A

sup
v∈A

∫
Σ

dvolv > 0 .

Then there exists a closed Riemann surface17 (S, σ) with genus(S) ≤ genus(Σ) a map v ∈ C0(S,N5) ∩
W 1,2(S,N5) and N ∈ L∞(S,N∗) such that

i) Weakly Legendrian
v∗α = 0 ,

ii) Weakly Conformal : in local conformal coordinates for S

|∂x1v|2 = |∂x2v|2 and ∂x1v · ∂x2v = 0

iii) Realization of the Width∫
S

N |∂x1
v ∧ ∂x2

v| dx1 ∧ dx2 =
1

2

∫
S

N |∇v|2σ dvolσ = β

17We equip the surface with a compatible metric σ. All the statement below only depend on the conformal class of σ but
not on the choice of σ within the coformal class.
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iv) Weakly Hamiltonian Stationarity

∀h ∈ C3(S) , ∀f ∈ C1(S) for a.e. λ ∈ R s.t. v(f−1{λ}) ∩ Supp(h) = ∅∫
f−1((λ,+∞))

N
〈
dv, d

[
X⃗h ◦ v

]〉
dvolσ = 0 ,

(V.1)

where X⃗h is the Hamiltonian vector-field associated to h and given by

X⃗h := JH(∇Hh)− 2h R⃗ , (V.2)

where ∇H is the projection onto H of the gradient in (N5, g).

v) Almost Monotonicity. There exist two constants c∗ > 0 and C > 1 depending only on (N5, g, α)
such that

for ν a.e. x ∈ S and ∀ s > t > 0

c∗ < t−2

∫
v−1(Bt(v(x)))

N dvolv < C s−2

∫
v−1(Bs(v(x)))

N dvolv

(V.3)

ν := 2−1N |∇v|2σ dvolσ and Bt(p⃗) denote the ball of radius t > 0 and center p⃗ for the Carnot
Caratheodory distance on (N5, g, α). 2

In [19] the corresponding result to theorem V.1 was proven without the pointwise Legendrian con-

straint. Solutions to (V.1) for arbitrary X⃗ (non necessarily hamiltonian) were called parametrised sta-
tionary integer varifolds. In an analogous way we shall be calling any triple (S, v,N) solving (V.1) for any
Hamiltonian vector-field of the form (V.2) and the almost monotonicity (V.3) Legendrian parametrised
hamiltonian stationary integer varifolds.

The hypothesis that the stationarity identity (V.1) holds for a.e. λ ∈ R as long as the image by v of the

level set f−1{λ} is avoiding the support of the testing vector-field X⃗ is called “localisation hypothesis”.

Combining the nullity of the variation of the area for perturbation X⃗ in the target with the “localisation
hypothesis” is a substitute to the Euler Lagrange equation (I.5) which has no satisfying weak formulation
as we discussed in the foreword.

Unlike the general stationary case without pointwise constraint, the author does not know how to
derive the almost monotonicity property (V.3) from the stationarity condition (with the localisation
property) (V.1). Hence hypothesis v) is apriori not redundant.The almost monotonicity property is
obtained from the smoothing approach we have adopted.

The strategy adopted to establish theorem V.1 is the penalisation approach introduced by the author
in [19] under the name “viscosity method” (This method has then been implemented for free boundary
surfaces in [17]). Precisely we study the smoothed minmax operation

β(ε) := inf
A∈A

sup
v∈A

Eε(v) :=

∫
Σ

dvolv + ε4
∫
Σ

(1 + |⃗Iv|2)2 dvolv

where I⃗v is the second fundamental form of v. We construct almost critical points vk of Eεk for a sequence
εk → 0 such that

Eεk(vk)− β −→ 0 and ε4k

∫
Σ

(1 + |⃗Ivk |2)2 dvolvk = o

(
1

log ε−1
k

)
.

The main difficulty consists then in passing to the limit for some well chosen subsequence of vk in order
to obtain the triple (S, v,N) satisfying the conclusions of theorem V.1. While we follow mainly the same
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scheme as the one introduced in [19], working with the Legendrian constraint however is making the proof
of theorem V.1 obviously much more challenging.

In [18] it is proved that any parametrised stationary varifolds is a smooth branched minimal immersion
equipped with a smooth multiplicity. We make the following conjecture.

Open Problem Prove that 2-dimensional Legendrian parametrised Hamiltonian stationary integer var-
ifolds are branched Legendrian immersions and smooth away from isolated Schoen Wolfson conical sin-
gularities. 2

Acknowledgments : The author would like to express his gratitude to the Abel foundation, the Norwe-
gian University of Science and Technology, and the Research Council of Norway as well as to the Abel
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[6] Dazord, Pierre Sur la géométrie des sous-fibrés et des feuilletages lagrangiens. (French) [On the
geometry of sub-bundles and Lagrange foliations] Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 4,
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[10] Frédéric Hélein and Pascal Romon. Hamiltonian stationary Lagrangian surfaces in C2. Comm. Anal.
Geom., 10(1):79-126, 2002.

[11] Micallef, M.; Wolfson, J. Area minimizers in a K3 surface and holomorphicity. Geom. Funct.
Anal.16(2006), no.2, 437-452
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