Energy Quantization for Willmore Surfaces
and Applications
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Abstract : We prove a bubble-neck decomposition together with an energy quantization result for
sequences of Willmore surfaces into R™ with uniformly bounded energy and non-degenerating conformal
type. We deduce the strong compactness of Willmore closed surfaces of a given genus modulo the Mobius
group action, below some energy threshold.
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I Introduction

Let ® be an immersion from a closed abstract two-dimensional manifold ¥ into R™23. We denote by
g = P+ grm the pull back by & of the flat canonical metric grm of R™  also called the first fundamental
form of <I_5, and we let dvol, be its associated volume form. The Gauss map of the immersion d is the
map taking values in the Grassmannian of oriented m — 2-planes in R™ given by
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where * is the usual Hodge star operator in the Euclidean metric.
Denoting by 77 the orthonormal projection of vectors in R™ onto the m — 2-plane given by 7ig, the

second fundamental form may be expressed as'

VY X,Y €T,% L(X,Y) := m;,d°®(X,Y)
The mean curvature vector of the immersion at p is
. 1 - 1 .
H(B = itTg(H) = 5 [H(€1,€1)+H(€2,€2):| ,
where (e1,€2) is an orthonormal basis of 7),% for the metric gg.

In the present paper, we study the Lagrangian given by the L?-norm of the second fundamental form:

E(®) := /E T3 dvoly,

An elementary computation gives

E(®) := /E Tz dvoly, = /Z |diig|;. dvoly,
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1n order to define d2®(X,Y) one has to extend locally around Tp¥ the vector-fields X and Y. It is not difficult to check
that w7 d2®(X,Y) is independent of this extension.




The energy E/ may accordingly be seen as the Dirichlet Energy of the Gauss map 7ig with respect to the
induced metric gg. The Gauss Bonnet theorem implies that

E(®):= /E If5, dvoly, = 4/E |Hg|* dvoly, — 2/2Kq; dvolg, =4 /;:'H‘f"Q dvol, — 4mx(¥) , (L.1)

where K gz is the Gauss curvature of the immersion, and x(X) is the Euler characteristic of the surface 3.
The energy

W (®) ::/ |Hg|? dvoly,
b
is called Willmore energy.

Critical points of the Willmore energy, comprising for example minimal surfaces?, are called Willmore
surfaces. Although already known in the XIXth century in the context of the elasticity theory of plates, it
was first considered in conformal geometry by Blaschke in [Bla] who sought to merge the theory of minimal
surfaces and the conformal invariance property. This Lagrangian has indeed both desired features : its
critical points contain minimal surfaces, and it is conformal invariant, owing to the following pointwise
identity which holds for an arbitrary immersion ® of ¥ into R™ and at every point of 3:

= =od

¥ 2 conformal diffeo. of R™ U {oo} [|Ho, 32 —K:q>] dvol,_ _ = [|ﬁq;|2 —Kq;} dvol,.
Using again Gauss Bonnet theorem, the latter implies the conformal invariance of W :
V Z  conformal diffeo. from R™ U {oo} W(Eo <I_5) = W(tf)

This conformal invariance implies that the image of a Willmore immersion by a conformal transformation
of R™ is still a Willmore immersion. Starting for example from a minimal surface, one may then generate
many new Willmore surfaces, simply by applying conformal transformations (naturally, these surfaces
need no longer be minimal). In his time, Blaschke used the term conformal minimal for the critical points
of W, seeking to insist on this idea of merging together the theory of minimal surface with conformal
invariance.

An important task in the analysis of Willmore surfaces is to understand the closure of the space of
Willmore immersions under a certain level of energy. Because of the non-compactness of the conformal
group of transformation of R™, one cannot expect that the space of Wilmore immersions in closed in the
strong C'-topology. However, locally, in isothermic coordinates®, under some universal energy threshold,
if the conformal factor of the induced metric gz is controlled in L°°, then the immersion is uniformly
bounded in any C! norm. More precisely there holds the following e-regularity result.

Theorem 1.1 [Ri2] There exists e(m) > 0 such that, for any Willmore conformal immersion ® from
B1(0) into R™ satisfying

/ |Viig|? do < e(m)
B1(0)
then for any I € N* we have

1/2
le™ V'®| oo (5, ,4) < Ci

/ |Vﬁ5|2 dx + 1
B, (0)

where C; only depends on |, while A denotes the conformal parameter of ®. Namely, A\ = || log |azl(§|||Loo(Bl) =
[110g |02, ®|[| Lo (B,) - O

2

minimal surfaces satisfy H = 0 and are hence absolute minimizers of W.

3 Analogously to other gauge-invariant problems, such as in Yang-Mills theory, isothermic coordinates or conformal
parametrizations provide the optimal symmetry breaking method in the search of pertinent estimates. A detailed discussion
on this topic is available in [Ril].



This theorem leads to the concentration of compactness “dialectic” developed by Sacks and Uhlenbeck.
In a conformal parametrization, assuming that the conformal factor is L°°-controlled in some subdomain
of ¥, then a sequence of Willmore immersions can fail to convergence strongly in C! only at isolated
points ; namely, at those points where the W'2-norm of the Gaus map concentrates. Assuming their
induced metric generates a sequence of conformal classes which remains within a compact subdomain of
the moduli space of X, the control of the conformal factor of a sequence of conformal immersions with
uniformly bounded Willmore energy is also guaranteed, except at those isolated points of ¥ where the
W12 norm of the Gaus map concentrates. This fact is established in [Ri3] (see also proposition III.1
below), and it ultimately follows from the works of Toro [To|, of Miiller and Sverak [MS], and from the
work of Hélein [Hel] on immersions with totally bounded curvature.

To fully understand the loss of strong compactness of a sequence of Willmore surfaces, the difficulty is
of course to perform the necessary analysis at the “blow up points”. This is the aim of the present paper.
Under the assumption that the sequence of conformal classes associated to the sequence of Willmore
surfaces remains within a compact subdomain of the Moduli space, we show that, modulo extraction of a
subsequence, the parametrizing abstract surface splits into three distinct regions : the main region where
strong convergence holds, the concentrating parametrization of non-trivial Willmore spheres, and finally
the bubble and neck regions connecting the two previous ones and in which we show the energy vanishes.

We now state our main result.
Theorem 1.2 Let ®;, be a sequence of Willmore immersions of a closed surface Y. Assume that

limsup W (®;) < +oo0

k—+oo

that the conformal class of <f)Zng remains within a compact subdomain of the moduli space of 3. Then,
modulo extraction of a subsequence, the following energy identity holds

q

lim W(By) = W(Ew) + D W)+ [W(G) —4r6] (12)

k—+oo

where {OO is a possibly branched smooth immersion of . The maps 15 and C_,; are smooth, possibly
branched, immersions of S? ; and 0; is the integer density of the current ((;).[S?] at some point p; €
G(S2), namely

oot (Br ) nG(s?)

r—0 mTr2

The second part of our main result describes how the maps Eoo, 77° and 5’5 are obtained from the original
sequence .

Theorem 1.3 With the same notation as in theorem I.2, the immersion Eoo is obtained as follows.
There exist a sequence fy of diffeomorphisms of ¥, a sequence Zy of Mdebius transformations of R™ ,
and finitely many points {a', ..., a"} such that Zx o & o fi is conformal and

€ =Sk o0&k o fx — Eno inCl (2\{a',...,a"}) VIeN . (1.3)
Furthermore, there holds

lim W(®) = W(€x) — & — b nC(2) VY1leN . (L4)

k—+oo



Finally there exists a sequence hy of constant scalar curvature metric conformally equivalent to f_;c =
Ero&ro fr and strongly converging in C'(X), such that for any s € {1,...,p} (resp. for anyt € {1,...,q})
there exist a sequence of points x; € ¥ converging to one of the a', a sequence of radius p; converging
to zero, and a sequence Qf Mobius transformations Z5 (resp. Zf) for which (in converging hy, conformal
coordinates @y, around a*), one has

Ef o &opnlpl y+ ¢ (27)) — T om ™ (y) in Cloe(C\{ag,...,al*})

and respectively

Zho&kown(pl y+ oy (1) — Gom (y) in Cloo(C\ {ag, ..., af"})
or any I € N ; where © denotes the stereographical projection from S? into C and {al,...,a™} and
S S
ar,...,a} are finite sets of points in the complex plane.
to ) At p piex p
The maps Z; are compositions of a dilation and isometries, while each map =i, is a composition of one
inversion, one dilation, and one isometry. ]

The results given in theorem 1.2 and theorem 1.3 are to be viewed in the context of other bubble-neck
decomposition and energy quantization situations previously studied. In particular for harmonic maps
and other conformally invariant problems as those considered in [SaU], [Jo], [St], [DiT], [Pa], [Ri5], and
in [Ri6]. However, these problems are all of second-order elliptic or parabolic types. The novelty of the
present work is an energy quantization result and bubble-neck decomposition for a fourth-order problem?.
Moreover, the analysis which we present here requires to handle one additional delicate difficulty, namely
the need to first control the conformal parameter in “conformally degenerating” neck regions (annuli),
prior to obtaining from PDE techniques the vanishing of the energy in these regions.

It is legitimate to ask what happens if one removes the assumption on the control of the conformal
structure. In this situation, the first important observation is provided by the examples constructed in
[BuPa], where inverted catenoids arise as limiting bubbles, which are thus not smooth Willmore immersion
of S2. The second important observation is that harmonic mapping from a degenerating Riemann surface
into a manifold are known in general not to satisfy the energy quantization property in the thin collar
regions (cf. example constructed in [Pal], and the careful systematic study given in [Zhu]). Questions
associated with the more complex situation in which the sequence of conformal classes no longer remains
within a subdomain of the Moduli space are considered in a forthcoming work [BR3].

Several authors have recently undertaken the task of understanding the degeneracy of sequences in
Moduli space. In [Sch], it is shown that for a sequence ¥;, C R™23 of closed, orientable, embedded surfaces
of fixed genus g > 1 with limsup,_,., W(2x) < 8m, the convergence in Moduli space of the associated
sequence of conformal classes [X] is equivalent to a “no loss of topology” condition: any subsequence
has a subsequence satisfying, after applying M&bius transformations, H2L ¥, — p as Radon measures,
where spt(u) is a closed, orientable, embedded topological surface with same genus g. Furthermore,
the associated conformal class [X] converges to [u] in Moduli space. Alternatively, a sufficient energy
condition ensuring the non-degeneracy of the conformal class has been given (in the cases m = 3 and
m = 4) in [KS1], and for surfaces in any codimension in [Ri4] (and independently in [KuLi]). Following
the convention in [Si], we introduce

Bg" = inf {W(fl_ﬁ) ; ® is an immersion of the genus g closed surface }

4Indeed, in a conformal parametrization 5_; the Willmore functional may be recast as
L1 o
W) = 1 [Aggl” dvolg
>

thereby giving rise to a fourth-order problem



and

P
w;”:min{47r+2(ﬁgz47r) o g=n+...+g 1§gi<g}
i=1

In [BK], it is proved that for g > 2 there holds
Byt <wg' . (L.5)
Theorem 1.4 [Ri4] [KuLi] Let (3, ck) be a sequence of closed Riemann surfaces of genus g, with degen-

erating conformal class [cx] diverging to the boundary of the Moduli space of ¥. Let @ be a sequence of
conformal immersions from (X, cy) into R™. Then

lim inf / |E{<I;k|2 dvolg, ., > min{8m w;} . (1.6)
2

k——+oo
O
A consequence of our analysis below is the following result.

Theorem 1.5 Let X be an arbitrary closed two-dimensional manifold. Modulo the action of the Mdébius
group of R™  the space of Willmore immersions into R™, for m = 3 and m = 4, satisfying

W(®) < min{8m,wy"} — &
is strongly compact in the C* topology for any | € N and any § > 0. |
This result was obtained for 3 = T2 and m = 3 in [KS] and for ¥ = T2 and m = 4 in [Ri2].

The paper is organized as follows. In section II, we recall the formalism introduced in [Ri3] which
enables to appropriately “renormalize” a sequence of weak immersions uniformly bounded Willmore
energy. In section III, we outline a generic “energy tracking” procedure enabling us to detect bubbles
and neck regions. Section IV, also general in nature, explains how to construct a Coulomb moving
frame under the hypothesis that the Gauss map has small weak-L2norm. In Section V, we develop
uniform Harnack estimates giving control of the conformal factor of weak immersions in the neck regions.
Willmore immersions first appear in section VI, where we show how to control the L?'-norm of the
mean curvature vector in the neck regions. In Section VII, we derive an energy quantization result for a
sequence of Gauss maps corresponding to a sequence of Willmore immersions. Finally, in section VIII,
all of the aforementioned estimates are seamed together, and the main theorems 1.2 and 1.3 are proved.

IT Preliminaries

In [Ri3], the second author developed a suitable framework in which one can perform the calculus of
variation of the Willmore Lagrangian of a surface. In this framework, a particularly useful space is that
of Lipschitz immersions with L?—bounded second fundamental forms.

Let go be a smooth “reference” metric on ¥. One defines the Sobolev spaces W (%, R™) of measurable
maps from X into R™ as

k
WhP(Z,R™) := {f meas. X — R™ s.t. Z/ |Vlf|§U dvolg, < +oo}
1=0 >

As ¥ is assumed to be compact, this space is independent of the chosen reference metric gq.



It is important to have a weak first fundamental form: we need o grm to define an L°° metric with a
bounded inverse. This is the case if we assume that @ lies in Whee (%) and if d® has maximal rank 2 at
every point, with some uniform quantitative control of “how far” d® is from being degenerate. Namely,
there exists ¢g > 0 such that

[d® A dB|yy > co>0 (IL.1)

where dg_; A dqﬁ)ﬁis a 2-form on ¥ with values in the space of 2-vectors of R and given in local coordinates
by 20,® A 0y ® dz A dy. Note that the condition (II.1) is independent of the choice of the metric go . To
a Lipschitz immersion satisfying (II.1) we associate its Gauss map

Op, ® N Dy, ®
R S S——
[0z, D A Oy, @|

n(b:

It belongs to L>°(X) and takes values in the Grassmannian of oriented (m — 2)-planes in R™.

We next introduce the space £x of Lipschitz immersions® of ¥ with square-integrable second fundamental

form: . .
O c WHe(S,R™)  s.t. ® satisfies (I1.1) for some co

Eyy =
and / |dﬁ|§ dvoly < 400
b

As before, g := @*ng is the pull-back by & of the flat canonical metric grm of R™, and dwol, is its
corresponding volume form.

As in the case of the Yang-Mills functional, one of the main difficulties one encounters in the vari-
ational study of the Willmore functional is the size of the corresponding gauge group (i.e. the group
of transformations through which the energy is invariant). For the energy W, this gauge group is very
large: it contains all diffeomorphisms of 3. To “break” the gauge invariance, one of the first techniques
considered in [Ri3] consists in working with conformal immersions. Indeed, owing to the work of Miiller
and Sverak [MS] and to the work of Hélein [Hel], one gains an L°-control of the conformal parameter
under a small energy F assumption. It is then possible to show that the pull-back metric of any element
in &, defines a smooth conformal structure on 3 (cf. details in [Ril]). Thus, corresponding to any element
P e Es, there exists a Lipschitz diffeomorphism f of 3 such that do f is conformal. Having found a
conformal structure ¢ of X, one defines

& = {tf) €& st @ is conformal wr.t. ¢ }

The existence of a minimizer in the class & is proved in [Ri3] (arbitrary codimension) and in [KS2]
(codimensions 1 and 2). Except if the minimizer is globally isothermic, its smoothness is established
in [Ri3] away from finitely many branch points, and the minimizer satisfies the conformal-constrained
Willmore equation (cf. [BR1]). Alternatively, under certain energy assumptions, or assuming there are
no branch points, it is shown in [KS2] that the minimizer is smooth.

Naturally, in considering a sequence of elements in &y, the corresponding sequence of conformal classes it
yields is not a priori controlled, and it might diverge in the moduli space of ¥, even when the Willmore
energy of the immersions is uniformly bounded. This possible degeneracy of the conformal class is another
source of trouble when trying to control a sequence of immersions with uniformly bounded Willmore
energy. In the present work, we will assume that the aforementioned sequence of conformal classes does
not degenerate. Sufficient energy conditions to avoid degeneracy of the conformal structure were given

5henceforth called weak immersions.



in [Ri4], and independently in [KuLi] ; while necessary and sufficient conditions were given in [Sch] in
topological terms.

Once the global gauge choice is made, the second difficulty one encounters is the invariance of the
Willmore functional under conformal transformations of R™. Namely, any conformal diffeomorphism =
of R™ (i.e. an element of the M&bius group of R™) leaves both £ and W (through composition). Since
the Mobius group is non-compact, this invariance generates serious troubles in the study of a sequence of
immersions with uniformly bounded Willmore energy. Indeed, such a sequence may a-priori collapse to
a point in the limit! To overcome this difficulty, various methods have been devised®, such as Lemma, 4.1
in [KS1], Lemma IIL.1 in [Ri3], and Proposition 2.2 in [Sch]. In the present work, we extract a suitable
gauge = with the help of the “three-point renormalization” procedure given in Lemma III.1 and Lemma
A4 of [Ri3]. Doing so yields an “almost” weak closure result for sequences in £ modulo composition
with suitable elements of the M6bius group. More precisely, the limit immersion is not necessarily a weak
immersion of the whole ¥, but only a weak immersion away from possibly finitely many points. We are
thus led to consider the space of weak branched immersions,

d e Wh(S,R™) st Hay,...,an} € with

V K compact subset of X\ {a1,...,an}

Fx = I
Jexg >0 st.VeeK |dPAdP|,(z) > ckx

and / |dﬁ|§ dvol, < 400
by

Finally, we introduce the space of elements in Fs; which are conformal with respect to some fixed conformal
structure c,

%= {tf) €Fs s t. @ is conformal wrt. ¢ }

The above discussion is summarized in the following result, which will be a central ingredient in the rest
of this article.

Lemma I1.1 [Ri3] Let 3 be a closed two-dimensional manifold. Let dy, be a sequence of elements in
Es: such that W(®y) is uniformly bounded. Assume that the conformal class of the conformal structure
¢k (i-e. complex structure of ¥.) defined by <f>k remains in a compact subspace of the Moduli space of
.. Then, modulo extraction of a subsequence, the sequence cj converges to a smooth limiting complex
structure coo ; and there exist a sequence of Lipschitz diffeomorphisms fi of ¥ and a sequence of smooth
conformal structures cy of 3 such that dy 0 fr is conformal from (3, ck) into R™. Moreover, there exists

a sequence Zy of conformal diffeomorphisms of R™ U {oo} and at most finitely many points {a',... a"}
such that . B
lim supH(Ek oPy o0 fk(Z)) < 400 , = o®p o fk(E) C BR(O) (HQ)
k—+oo

for some R > 0 independent of k, and

& =Cpo®ro fr — o weakly in (W22NWEV (D {at,...,a"}) . (IL.3)

loc loc

The convergences are understood with respect to hy, which is the constant scalar curvature metric of unit
volume attached to the conformal structure cg.

6analogously, in the “ambient approach” originally introduced by Leon Simon [Si], a renormalization of the image is

performed.



Furthermore, there holds

V K compact subset of ¥\ {a',... ,a"} llicm sup || log |déx|n, | Lo (k) < 400 . (I1.4)
— o0

Finally, £~ is a weak immersion of & \ {a',...,a"} and conformal from (X, cso) into R™. O

IIT The bubble-neck decomposition procedure

The goal of this section is to establish the following technical proposition. Although its statement might
seem at first somewhat overwhelming, its proof involves no particularly challenging difficulties and is
based on an iteration argument.

Proposition ITI.1 [Bubble-neck decomposition] Let ¥ be a closed two-dimensional manifold. Let

f_;c be a sequence of weak Lipschitz immersions with L?—bounded second fundamental forms (i.e. f_;c €és)
such that

/E|dﬁ5k|2k dvolg, <A

where gy, := {; grm . We suppose that gy, is conformally equivalent to a constant scalar curvature metric

hi such that for all l € N

)

hi — hoo in CY(X)
where hoo 15 a constant scalar curvature on .

Suppose there exist n points {a',...,a"} C ¥ and a radius R > 0 such that the following holds

(i)

lim sup H (& (X)) < 400 (I11.5)
k—+oo

(ii)
&k (X) € Br(0) (I11.6)

(iii)
£ — oo weakly in (W22NWES)(2\ {a},,...,a"}) (I11.7)

(i)
V K compact subset of £\ {a',...,a"} limsup| log|dk|n,| r=(x) < +oo . (II1.8)

k——+oo

Then for any 0 < €9 < 8 /3, there exist a subsequence, still denoted Ek ,n integers {QY,...,Q"}, n

sequences of points (ZC’;CJ)]‘:L___,Q'L C X, and n sequences of radii (pzj)jzl,___,Qi satisfying

Viel,...,n Vje{l,...,Q" kggloox;;j:ai , (IT1.9)
Viel,...,n Yje{l,...,Q} Jim Pl =0, (II1.10)
—+o0
and . o,
5] ]
either lim p.k,, Pe__ _ 400
) k—+o00 p;’c’J p;c’]
Viel,...,n Vji#j €{l,...,Q"} (IIL.11)
|xi’j —xi’j/|
or lim ="k 1 — 4

k——+o00 pZJ +P2’j/



Moreover,

Vie{l,...,n} Vjie{l,...,Q"%} |dii z

_ dvoly, >¢eq . (II1.12)
B i (@)

133 |gk

The set of balls Bpi,j are called “bubbles” associated to the sequence 5; .
k

We have furthermore that for any i € {1,...,n} and for any j € {1,...,Q"}, the set of indices’

i,J

.. . .7 -/ -,< pk
= {J’ ooy €Bua(ar) 7 —>+oo}

k

is independent of k. It is called the set of “bubbles contained in the bubble sz,j (xh3)7.

For any a < 1 we denote

Vie{l,...,n}  Qi(a) \UB,W ,

and

Vie{l,...n} Vje{l,...Q} )= |J N U B @)

jlersi g erii

The sets Qi (o) and the Q;’j(a) are the “a-neck regions” of &. Let

Qe (a) = U Qi (a) U U Q7 (o)

Then there exists 0 < a < 1 independent of k, such that
Vie{l,...,n} Vjie{l,....,Q"} and Yp>0 with Ba,(z}’)\ B,(z) C Q(a)
(TI1.13)
then / N |dn£k|gk dvoly, <eo
B2P(IL’J)\BP(I)

and such that )
Vie{l,....,n} Vje{l,...,Q"}

(I11.14)
then / N v |dnE |gk dvolg, > €o
sz,j (" N\Uyrerini BQPQJ (zi”

Given 0 < a < 1, we set

Vie{l,...,n} Vje{l,...,Q"}

By(2) C B i () M U B, i (287

jeri

r}%’j =inf{0<r< p;’j ;
|diiz |2 dvol,, = eg
/Br(m) Ci 1 :

7this set might be empty.



Then there holds o
_ i,

Vie{l,...,n} Yjie{l,...,Q}  liminf 2->0 . (I11.15)
k—+oo ka

0
We prove this proposition inductively by repeating finitely many iterations of the following lemma.
Lemma III.2 [Energy tracking procedure] Let Ek be a sequence conformal weak immersions from
the two-dimensional annulus Qi := Bpr, (0) \ B,,(0) C C into R™, with Ry /rr — +oo. We assume that
/ Vitg [Pdz <A < 400 . (I11.16)
BRk (O)\Brk (0)

Then for any €9 > 0, one can extract a subsequence, still denoted {k, such that there exist a fized integer
N € N satisfying

A
N <4 (— + 1) , (II1.17)
€0

and a sequence of decreasing families of (N + 1) radii

RV=Ry>R,>...>RYN =r, ,

5
Vie{0,...,N -1} / Viig, | dH' </ Teq (IIL18)
OB i k 2

Ry

for which

Moreover, the set I ={0,...,N — 1} can be decomposed into two disjoint subsets I := Iy U I; with

Viely log, g < T = kEIJPoo log % < 400 (II1.19)
and
Vielh /B . Vitg [*do < e and kEToo log % =400 . (I11.20)
rj \Prit1 k
0

Proof of lemma III.2. We begin by constructing a decreasing sequence of radii {p{ = Ry > p}, > ... >
@l 9 = h th
P~ > py = ri} such that

5
Vije{o,...,Q} / |Vitz | dH' < |/ =& (I11.21)
oB ;(0) " 2
Pk
and )
o 4
vjie{o,...,Q} log, — >logy < (111.22)
Py,

Moreover, for any j € J = {0,...,Q — 1}, one of the following three possibilities holds
(i)
c0/2 < / Vit 2 dz < <o (I11.23)
B k

o VB

10



/ |Vitg |* de < e0/2 (I11.24)
B j\B j1
Py, Py
and either pffl = pg =71} or
it
/ Vit |? de > eo/2 and logy —45 < C (I11.25)
Bpiﬂ\Bpiw Pk
(iii)
J
/ |Vﬁ5k|2 dx > ¢eq/2 and log, % <C , (TIT.26)
Bpi \Bpiﬂ Py,

where® C := [2A/go] + 2.

The construction of pi is done by induction on j. We take first pY) := Rj. Assume that we have found
some py. satisfying (II1.21)-(II1.22) and one of the alternatives (i)-(iii) for [ < j, and such that (IIL.24)

fails for j. To construct pf:rl, we proceed as follows. Let p > r; be such that

/ Vi |? de = e0/2
B4 \B,(0)

If no such p exists, we simply choose pgjl =Tk.
For any 0 < a < 1 and Ry >t > o~ !y, there holds

t
/ ds / Vitg, | <t /a1l —a?) / Viig > . (I11.27)
at 0B, (0) B\ Bat

Suppose first that

LR
BP\BP/2

Applying (IT1.27) with ¢ = 3p/4 and o = 2/3, and using the mean value theorem, yields some s €

[p/2,3p/4] such that
)
/ Viig [dH! < |/ 2-eo
0B,(0) k 2

Then p)t! := s satisfies (I1.21), (IT1.22) and the alternative (II1.23).
Suppose next that

/ |Vﬁ{k|2 > 60/2
BP\BP/2

Then there must exist some [ € {1,...,[2A/eg] + 1} for which

/ Vitg [* < e0/2
By—1,\By-1-1,

8[a] denotes the integer part of a € R, namely, the largest integer less than or equal to a.

11



Calling again upon (II1.27) with ¢t = 27!p and a = 1/2, and using the mean value theorem, we obtain

some s € 27171 27!] such that
3
/ Viig ldH' < \/Seo (I11.28)
9B.(0) k 2
1

It pi < 2p, then we let p;"" := s, and note that (IIL.21), (II1.22), and the third alternative (II1.26) with
C = [2A/eo) + 2 are satisfied. If instead pj, > 2p, we pick some o € [2p, p] such that

3
/ Viiz [dH! < e |
&k 2
9B, (0)

and set p, ' := o and p)7* ;= s. One verifies that (IT1.21), (II1.22), and the second alternative (II1.24)-
(II1.25) is satisfied.

The above inductive construction must stop after a number of steps smaller than [4A/eg] + 2. Indeed, at
least every other index, an amount of £9/2 of the (finite) Dirichlet energy of iz is exhausted.

To complete the proof of the lemma, we first extract a subsequence f_;cr such that
- @ is independent of k’.

- for each j € {0,...,Q — 1}, we have

J
7= lim log, P € RU{+oc0}

k' —+o00 p‘;v;‘rl
We keep denoting ‘phis subsequence by f_;c From the sequence pi, we extract the desired decreasing
sequence of radii R;, by merging successive annuli such that
J
k/

lim log, % =7,€R
Pl

k! —+o00
and dropping the intermediate pi. One easily verifies that the obtained sequence Ri satisfies (II1.17)-
(IT1.20), thereby completing the proof of lemma IIT.2. U

Proof of proposition III.1.
Let 0 < g9 < 87/3. Consider

Pk = inf {p ; / |dﬁ5k|§k dvoly, =e9 Vze Z} ,
)

p(z
where B,(x) denotes the geodesic ball of center « and radius p for the constant scalar curvature hy,. If

limsuppr >0
k— o0

we can extract a subsequence such that pp converges to a positive constant. Then there is no a;. This
would indeed require the concentration of at least 87 /3 of energy, which is precluded by the result proved
in [Ri3]. There is no bubble and the procedure stops.

Alternatively, we consider the case when

lim pr =0

k—+oo

12



Let x € X be such that

/ |dﬁ5k|§k d’UOlgk = &0
Bpk (Ik)

Modulo the extraction of a subsequence, we have that x; converges to one of the points a’. We set
x;’l = x and p;’l := pr. By hypothesis, we may choose converging conformal coordinates around a’.
For notational convenience and clarity, since the converging metrics hy are uniformly equivalent to the
flat metric, we shall work with flat geodesic balls. We can choose a subsequence Ek and a fixed radius

a > 0 such that, for any

lim sup <7 ; / |Viig, |*de=e9p =0
k—=+00 p<r<a Ba (0)\B,.(0) ¥

and we apply lemma II1.2 to this subsequence, still denoted Ek, and to Ry := a and 1y, := pfc’l = pg. This
gives then the existence of this family of radii

RY=a>R,>...>RY =p;’
satisfying (I11.18)-(111.20) and

k——+oo

RO
lim log R—’; =400 . (I11.29)
k
We merge successive radii R}'c and Rffl for i € I7 or for i € Iy such that

/ - - |Vﬁg|2 dl‘l dl‘g S €0
BRL(IZ )\BRZH(IL' )

We then get a subsequence of radii R} = a > Rfcl > > RZP = p?c’o for P < N such that either, for
i € Ip )
]
lim log —=%
k—+oo R;cl+1

< 400 and / |Vﬁg|2 dxidre > g9
BR;.CZ (O)\BR;;I+1 (O)

or, when 7; € I, we have

Riz i )
lim log Z.k =400 and Vpe (R, R}/2) /
koo T R Bap(z )\Bp(z})

|Vﬁg|2 dzry dre < €9

We consider the smallest annulus QZ’ = BR;-! \BRZ“ of the first type 7; € Iy. For such an 4; we introduce

pi = inf {p < Ry / |dﬁ£~k|§k dvolg, =e9 where x¢€ QZ}
BP(I)

We now consider the following alternative. Either

i
lim sup Pk

i
k—4o00 Rk

>0

we then extract a subsequence still denoted {k such that

i
lim pk.
k——+o00 R;cl

>0 ,

13



and we pass to the next QZL', if there is any, where iy € Iy, or we have

In such a case we apply again the energy tracking lemma II11.2 on the annulus BRil/2(1') \Bpil (z) where
k k

T € QZI satisfies

|diiz |2 dvol,, =g
/Bpgw e

and we set xz’Q = x and pﬁf = pfg. We keep this procedure running until all annuli of the type I
have been explored, and until the neighborhood of each a’ has been considered. This can be done in a
finite number of steps, since each application of lemma III.2 takes place around a ”bubble” exhausting
at least g of the total energy of the sequence f_;c With moderate effort, one checks that the sequence
of finite families of bubbles constructed at the end of the procedure fulfills the desired requirements of
proposition III.1. ([l

IV Construction of a Coulomb moving frame in each component
of the neck region

Let f_;c be a family of weakly converging Willmore immersions of ¥ fulfilling the conclusions of lemma II.1.
For some ¢( chosen smaller than the constant ¢ appearing in the e-regularity theorem 1.5 in [Ri2], we
apply proposition III.1 so as to obtain a subsequence for which we can decompose the surface into
“converging regions” (complements of small neighborhoods of the points a'), bubbles, and neck regions.
In each annulus B, (z}7) \ By, (z}’) C Qi () of a part of the neck region () satellite to some bubble
centered on x;] , the condition (III.13) states that

sup

/ o o |Vﬁ§k|d$<€0
ri<p<Ri J By, (29)\ B, (a}7)

Combining this fact with the e-regularity theorem 1.5 in [Ri2] gives that

Q.7 i,j - €
Ve BRk/Q(:pk’]) \ BQTk (;L'k’j) |VTL* | < Cm r\/fl’” . (IVI)
Yk

This pointwise estimate translates into a control of the L2-weak norm of Vﬁg in the annulus, namely:

HVﬁfk ||L2’°°(BR)@/2(E;L€J)\BZMC (") = Cm \/% ’ (Iv.2)

This L2-weak estimate for the gradient of the Gauss map in neck regions already appears in previous
works [LiRil], [LiRi2] and [Ri5]|, where it plays a decisive role. It is also of utmost importance in the
present paper, as it will enable us in lemma IV.3 to construct a W2 Coulomb gauge without having
to resort to the stronger L?-control of the gradient of the Gauss map commonly required in similar
situations. Our results are generic in nature, and they should be helpful to the study of other gauge
invariant problems.

We first need an extension lemma.
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Lemma IV.1 Let i € WH2(Bs,(0) \ B,(0), Gpr—2(R™)) where Gp,—2(R™) denotes the Grassmannian
manifold of oriented (m — 2)-planes in R™. There exists §(m) > 0 depending only on m such that if

/ V] dig, @ < 8(m) . (IV.3)
9B, (0)

then we can extend 7 to ii € W12(Bs,(0), Gr—2(R™)) with it = @ on the annulus B,(0) \ B,(0).
Furthermore,

VAl L2(B,,0)) < Cwm IVl L2(B,, (0\B,0) > (IV.4)

and X
VA2 (B,0) < Cmd(m) (IV.5)
where the constant Cyp, > 0 depends only on m. O

Proof of lemma IV.1. Let

ﬁo ::/ ﬁdlaBP(O)
2B, (0)

170 = 7ol L= (oB,(0)) < C |Vii| dlop,) < Cd(m)
9B, (0)

Then

for some constant C' independent of 7 and p.

Thus, if §(m) > 0 is chosen small enough and independently of 7ig, the plane 7(p) is contained in a small
geodesic ball Bs(flg) C Gp—2(R™) on which coordinates y = (y1,...,yn) exist. We may further choose
these coordinates in such a way that Bs(7lg) corresponds to the ball BY(0) of radius § and centered
on 0 € RY. Owing to the compactness of G,,—2(R™), we may always arrange for ||Vy_1||Lx(B§v(O)) to

depend only on m. We have®

N
17— ﬁO”Hl/Z(aBP(O)) = Z e — (nl)0||H1/2(6Bp(O)) ’ (IV.6)
I=1

where n; are the coordinates of 7 in the system {yl}l:Lm,N, and

(nl )0 = / ny
9B, (0)

Let 7; be the harmonic extension of n; into B,(0). Since the R¥-valued map (n;) is included in the
ball B(ISV(O)7 the maximum principle yields that (7y);=1,.. .~ € Bév (0). Moreover, standard estimates on
harmonic extensions and Sobolev embedding estimates give

N
/ Vil < CZH”Z - (”l)OH%I/z(aBP(o)) < CHﬁ_ﬁOH%{lm(aBP(o))
B,(0) =1
< ClVilliion, o) < C*

where the constants C' and Cjy depend only on m. Note that we have again used the characterization of 77
as an R¥m-valued map. Using the general fact that || - || 2.0y < 21|+ |12y for all U, the latter yields

||Vﬁl||L2,oo(Bp(0)) S Cl 5(m) 5 (IV?)

90n the left-hand side of (IV.6), we use the isometric embedding of Gy,—2(R™) into some REm  and 7 is viewed as an
REm _valued map.
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for some constant C; depending only on m.
In addition, using a trace theorem, we obtain

N
/ Viul? < CZ [Ine — (nl)0|‘§{1/2(33p(o)) < Cli- ﬁOH?{l/z(aBP(o))
B, (0) =1
< Gy HVﬁ”QL?(ng(O)\BP(O)) : (IV.8)

where the constant C depends only on m.
We next set 7 := y~*((7y)). Since ||[Vy~!| po(p,(0)) only depends on m, (IV.7) and (IV.8) imply the
desired (IV.5) and (IV.4), thereby proving lemma IV.1. O

The main result of this section also requires an integrability-by-compensation lemma for second-order
equations in divergence form. It was originally proved by Y. Ge in [Ge] through a different method from
the one used here.

Lemma IV.2 [Wente estimates in Lorentz LP'¢ spaces] Consider the divergence-form problem

(IV.9)

Ap = V4ta-Vb | in B(0)
v = 0 , on 0B1(0)

where Va € L*»*(B1(0)), and Vb € LP9(B1(0)) for some p € (1,00) and q € [1,00]. Then there holds

IVellLrasio) < CpallVallLzes ) IVOllLrasi0) - (IV.10)
for some constant Cp, 4 > 0. 0

Proof of lemma IV.2. Owing to the interpolative nature of the Lorentz space LP'?, it suffices to show
that (IV.10) holds for p = ¢ € (1,00). Consider first the case when p > 2. According to the Hélder
inequality for Lorentz spaces, there holds

L2 . [P C L7 (IV.11)

Since p > 2, we call upon the usual Calderon-Zygmund theorem and the Sobolev embedding theorem to

obtain that Vi € Wbt ¢ LP with the estimate (IV.10), as claimed.
Next, when 1 < p < 2, we use the divergence-form structure of the equation. Note that

Ap = div(bV+ta) (IV.12)

and that )
bV+ta € WhP.[2® C L7=5P . [2>® C [P | (IV.13)

where we have again used the Sobolev embedding theorem and the Hélder inequality for Lorentz spaces.
The desired (IV.10) follows immediately from (IV.12) and (IV.13) and this concludes the proof of
lemma IV.2. 0

We next state and prove the main result of this section.

Lemma IV.3 [W!2-controlled Coulomb frame from small L?**-control of the second funda-
mental form] Let 7 € W12(B1(0) \ B,(0), Gm—2(R™)) where 0 < r < 1/2. There exists n(m) > 0
depending only on m (but not on r) such that if

V7| 2. (B, (0)\B,.0)) < 1(m) (IV.14)
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and

/ Vil dlgp,. ) < n(m) (IV.15)
dB,.(0)

then one can construct an associated Coulomb frame {€1,€>} satisfying

*7 = €1 A € and di’l)(é& . Vgg) =0
Furthermore,
/ Ve + Ve < ¢ |Vii|? (IV.16)
By (0)\B(0) B1(0)\B(0)
and
2
> IVél L2508, o) < ClUVTllL2 (B 00\B(0) (Iv.17)
i=1
for some constant C depending on m, but neither on r nor on 7. O

Proof of lemma IV.3. Owing to lemma IV.1, we can always reduce to the case when r = 0. Indeed,
we have seen that the harmonic extension 7 in B,(0) of the restriction of @ to Ba,-(0) \ B,(0) satisfies
7 =1 on B1(0) \ B-(0), and we have the estimate

IVl 2o (Broyy < IVAllL2e (B 00\B. o) + [ VitllLze(s, @) < n(m) + Con(m)

In particular, if lemma IV.3 holds for r = 0 with the constant n(m) > 0, then it also holds for an arbitrary
0 < r < 1/2 with the constant n(m)/(C,, + 1) playing the role of n(m) in the statement. We shall thus
focus on the case r = 0.

We first suppose that 7 is smooth. According to Theorem 5.2.1 in [Hel], there exists a smooth
moving orthonormal two-frame {f1, fo} in W12(B;(0),R™) with x7i = f1 A f2. Its energy is however not
controlled, since we do not assume that ||V7i[|12(p, (o)) is smaller than the required threshold 87/3.

For each r € [0,1], let {f1..(x), fo.r(2)} := {fi(rz), fo(rz)}. We minimize
FT(eT) = / ‘ver + (f_li,r : vﬁ,r)ﬁ (IVlS)
B (0)

over all rotations 6, € W12(B1(0),R). As explained in Theorem 4.1.1 from [Hel], for each r, the minimum
of F, is attained at some frame {é} ,, € ,} satisfying

lr+i8y = e (fir+ifar) (IV.19)
and
div (5177« . Ve_’Q_’»,‘) =0 on BT(O)
(IV.20)
é’l_’,« '(9,/5277« =0 on 8BT(O)
Thus, there exists A, equal to zero on 0B, (0) and solving
V)\T = _gl,r . vLé’Q,r
It satisfies in particular
A)\T = Vlé’lﬂm . V€2,r 5 mn BQT(O)
(Iv.21)
A = 0 , on 90B,(0)
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Using the Wente inequality lemma IV.2 with (p, q) = (2, 00) yields
IVAll2oo 8. 0)) < CollVer |z, o)l VerlLzem, ) (IV.22)

for some constant Cjy independent of r. Moreover, as shown in the proof of Lemma 5.1.4 in [Hel|, an
elementary computation gives

Ve, >+ |Vér,[* = 2|VAP+ Vi . (IV.23)
Combining altogether (IV.22) and (IV.23) gives the inequality

1 . o
IV A 200 (B, 0)) + E(COHV”HL?m = DIVA L2 0y + CollVitllpze(p, 0 = 0 . (IV.24)

Accordingly, there exists some small enough threshold 1(Cy) = n(m) for which the hypothesis that
| Vii|| 2.0 (B, (0)) < m(m) guarantees that the range of ||V .| 2. (B, (o)) is of the form [0, a(n)]U[B(7), 00)
for some 0 < a(n) < B(n). One easily checks from (IV.24) that a(n) < C1||Vii][ 2. (B, 0)) With the
constant C; depending only on Cj, and thus only on m.

As f;.(z) = fi(rz) and f; belongs to W12(B;(0)), it is clear that f;,. is continuous in the parameter .
From this and the definition of 8, it follows that 6, is likewise continuous in r, and hence from (IV.19)
and (IV.21), that €, and A, are continuous in r. We see that ||V z2.~(B, (o)) takes the value 0 at
r = 0. From the above discussion, we deduce that at r =1,

VA2 (Bi0)) = IVAllz2e(Bi0)) £ a(n) < Cr[|Viillpz(B,0)) - (IV.25)
Let now {€1, €5} := {€1,1,€2,1}. By definition, this Coulomb frame satisfies
* =€ ANE ,  div@-Vey) =0 , ViA=¢&-Vey = —&-VéE . (IV.26)
Note next that
IVe;|? = ey - Ve + |[maVel? < VAP + |val?,  for (4,5) € {(1,2),2,1)} . (@Iv.27)
In particular using (IV.25), we find
IVeillLz. B, 0)) < IVAllL200 B, 0)) + IVAllL2oo(,0)) £ (C1+ 1) |Vidllpeoe 0y > (IV.28)

thereby giving the required (IV.17).
Calling again upon the Wente inequality of lemma IV.2 with (p, q) = (2,2), we obtain from (IV.21) with
r =1 that

IN

C2 [|Vé|[ L2 5, 0) [ Ve2 L2(B, (0))
< Gy (Cr+1)n(m) (IVAllL2s. 0y + [IVilll2si0))

where we have used (IV.27), (IV.28), and the hypothesis (IV.14). Here Cs is a constant that depends
only on m. The latter shows that ||[VA| 2B, 0)) < C3n(m) ||Vii| 2B, (o)), which, once introduced into
(IV.27) gives the announced

IVAllL2 (5, (0))

A

/ |Ver? + | Vés|? < C’/ Vi) (IV.29)
B1(0) B1(0)

where the constant C' depends only on m.

In the general case when 77 is not smooth, we use the limiting process outlined in step 6 of the proof of
Lemma 5.1.4 from [Hel], and based on the known fact [ScU] that C*°(B1(0), Gpn—2(R™)) is dense into
W12(B1(0), G—a(R™)). This concludes the proof of lemma IV.3. a
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V  General estimates in the neck regions of weakly converging
weak conformal immersions

Lemma V.1 [Estimate of the “Euler characteristic production” in neck regions] There exists

a constant n(m) > 0 with the following property. Let n < n(m), let R > 4r > 0, and let E be a conformal
weak immersion from Br(0)\ B,(0) into R™ with L?-bounded second fundamental form satisfying

IVitgll L2 (Br\B,) <11, (V.1)
| Vi dlano < (v.2)
9B,.(0)
and
/ Vit de <7 . (V.3)
BR\BR/ZUB‘ZT\BT

Then there exists a positive constant C,, depending only on m, but not on the conformal type of the
annulus log %, such that

/ Kg dvolgE <Cnn , (V.4)
Br(0)\B(0)

where Kg denotes the Gaussian curvature associated with the immersion 5 O

Proof of lemma V.1. Let Q = Br(0) \ B,(0). According to lemma IV.3 (applicable here owing to the
hypotheses (V.1) and (V.2)), there exists a Coulomb moving frame

{&1 &} e (WH2(Q,8m71))?

satisfying

and )
D IVéE @) < CulVill @) < Con (V.5)
1=1

where the constants C; depend only on m. The mean value theorem yields the existence of some o €
(1/2,1) with

2 2 2
>/ Vel < Csr S IVellimasy + O3 R S IV 1t (5o By
i=1 Y 9(Bar\B,-1,) i=1 i=1
2
< Cs Z ||V€iHL2,oo(Q) < Cs5Cam (V-G)
i=1
where C5 is a universal constant.
The Liouville equation states that
AN = —ePKg (V.7)

where A is the conformal parameter of the conformal immersion E From the way the Coulomb frame
{€1, €2} was constructed, there also holds on the annulus Br(0) \ B,(0):

AN = — Ve - Ve, = —div (61 V'eéy) . (V.8)
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Hence, we find using (V.6)

/ Kg e dx| = / Ve, - Viéy da
Ba r(0\B,-1,.(0) Bar(0\B,-1,.(0) (V.9)
§/ ler - Oresl dl+/ ler - Orea] dl < Cnp
9Ba r(0) 8B, 1,(0)
where 7 denotes the unit tangent vector to the circles 9B,(0), namely 7 = p~! 0y.
Moreover, owing to the hypothesis (V.3) and the fact that « € (1/2,1), we have that
/ |Kgl e**dw < 2*1/ Vitg|? do <270 (V.10)
B, -1, (0\B(0) B, -1, (0\B-(0)
and similarly
/ |Kgl e**da < 2*1/ Vitg]* do <271y . (V.11)
BR(O)\BQR(O) BR(O)\BQR(O)
Altogether (V.9), (V.10), and (V.11) yield the announced (V.4). O

Lemma V.2 [Uniform Harnack estimates for the conformal factor in neck regions| There

exists a constant e(m) > 0 with the following property. Let 1 < R < co. ]fg is a Lipschitz conformal
immersion from Qg := Br(0) \ Br-1(0) into R™ satisfying

sup / |Vﬁ5|2 dx <e(m) , (V.12)
re(R-1,R/2) J By . (0)\By.(0)
and'?

Hv>‘||L2’°°(QR) =A< +o0 . (Vl-?))

Then for any 4R~2 < o < 1 there exists Co(A) > 0, depending only on  and A but not on R, such that

sup,, M)
Sup p EBafl,‘(O)\Br(O) S Ca . (V14)

re(4R-1,aRr) Wfaen _, (0)\B,(0) M@

O

Proof of lemma V.2. Let r € (4R}, R/4). From (V.12), we have
/ Vitel” de < 4e(m) . (V.15)
B:}T(O)\Br/4(0)

With the help of the Fubini and mean value theorems, we deduce from (V.12) the existence of p €
(r/4,7/2) such that

4 2
[ v < dem) < 2em) (V.16)
B, (0) r 14
hence
/ |Viig do < \/dme(m) . (V.17)
98,(0)

1045 before, A is the conformal parameter of £&. Namely, \89015_] =et = |8x2§|.
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Following lemma IV.1, we choose \/4me(m) < §(m) so as to obtain an extension 7 of 7 in B,(0) with
/ \Vit]2de < 4C,e(m) (V.18)
B4 7‘(0)

where C,, is the constant depending only on m in the statement of lemma IV.1. Insuring further that
12Cyp em < 87, we can apply lemma 5.1.4 of [Hel] in order to find a framing {€1, &} € (W2(B4,(0)))?
satisfying x7 = €1 A €5 and

2
/ Y IVélde<C / |Vit|? de < 4C Cpe(m) . (V.19)
B4T(O) i=1 By T(O)
The conformal parameter satisfies
AN =Vte Ve, in By (0) \ B,/2(0) . (V.20)

Let u be the solution of
Ap = V4te Ve, in By, (0) \ B,2(0)

(V.21)
uw=0 on 0(By,(0) \ B,/2(0))
A standard Wente estimate (see theorem 3.3.8 in [Hel]) yields on one hand
il L (B4, 0\ B a0y < 27) 71 IVEL L2 [V L2 < Ce(m) (V.22)
and on the other hand
IVl LB (0\B, 2 (0)) < V3/32m[[Ver| L2 [[Ver][L2 < Ce(m) . (V.23)

Let v := XA — p be the harmonic function in By, (0) \ B, /2(0) equal to A on the boundary. Owing to (V.13)
and (V.23), there holds
HVV”L2’°°(B4T(O)\BT/2(O)) <C E(m) +A . (V24>

Let 7 be the average of v on By,(0) \ B, /2(0)). The Sobolev-Poincaré inequality gives

7“‘2/ v —7|dz < Clr_l/ |Vv|dx
Bar(0)\B;/2(0) B4r(0)\B;./2(0)

< G ||VV| L2 By (0\B, (0 < C3 e(m) +C2 A, (V.25)

where C; are universal constants. Since v — ¥ is harmonic, we deduce that on a smaller annulus the
L*>-norm of (v — ) is controled by e(m) and A:

v = Vll Lo (Bsr 0\ B (0) < C 7“_2/ lv — 7] doydey < Cule(m) + A) (V.26)
Bar (0)\B2(0)

where Cy is a universal constant. We set A_ := inf{A(z) ; € B2,(0) \ B,(0)}, Ay := max{A(z) ; = €
Bo-(0)\ B.(0)}, v— :=inf{v(z) ; = € B2,-(0)\ B-(0)}, and v; := max{v(z) ; © € By,-(0)\ B-(0)} . One
has the estimates

e eV+ el

e < < llloe ri—v— < 2Ce(m) 2Ca(e(m)+A) (V.27)
A = el = = ’ '
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where we have used respectively (V.22) and (V.26).

We have thus proved (V.14) for a = 1/2. Let now a = 277, for some j € N*. The idea is to
apply (V.14) successively j times, with o = 1/2 and with 2’7 in place of . For i = 1,...,5, we let
AL = inf{\(2) ; © € Byi,(0)\ Bgi-1,.(0)} and X, := max{\(z) ; & € By:,.(0)\ Bai-1,(0)}. Using the fact
that

AL SNEL
gives
M ML A M AT

The latter enables an iteration, and eventually yields that (V.14) holds with a = 277, for an arbitrary
positive integer j satisfying 4R~2 < 277, thereby concluding the proof of Lemma V.2. ([l

Lemma V.3 [Pointwise control of the conformal factor in the neck region] There exists a
constant n(m) > 0 with the following property. Let 0 < n < n(m) and 0 < 4r < R < 4oo. If £ is any
(weak) conformal immersion of 2 := Br(0) \ B,(0) into R™ with L?-bounded second fundamental form,
and satisfying

HVﬁE”LQv%(Q) <vn , (V.28)

then there exist o € (1/2,1) and A € R (depending on R, v, m, and €) such that

[A(@) — d log |z] — AllLe(Bar(0\B, 1. (0) < Cm <|VA||L2’°°(Q) + /Q |Vitel? diﬂ) ; (V.29)

where d satisfies

2rd — OrA dlop,
OB,
(V.30)
1
<Cn / Vil do 4+ ——— (Hv)\|L2,oo Q +/ |Vl |2 dw) ,
Bar(O\B,(0)  © log R/ @ Jg' e
and Cy, depends only on m, and X is as in lemma V.2. O

Proof of lemma V.3. It is convenient to introduce the constant
Q

We choose n(m) smaller than the constant n(m) given in lemma IV.3, so that there exists a framing

{gla 52} € (W172(Qa Smil))Q
with

2
xflg=8 A& and Z/Q Ve |2de < C /Q|Vﬁ5|2dx . (V.31)
i=1

The conformal parameter \ satisfies

AN =V1é - Ve, inQ . (V.32)
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Let p be the solution of
Ap=V=+e, - Ve, in Q

(V.33)
uw=20 on 0f?
As in the proof of lemma V.2, Wente estimates give
il () < (2m) 7 Ve 2 Vel < CA (V.34)
and
IVall@ < V37327 [Véill: [Vésllz: < CA . (V.35)

Let v := A — p be the harmonic function in Q equal to A on the boundary 99Q. Analogously to (V.6) in
the proof of lemma V.1, there exists a € (1/2,1) with

/ V| <7 [Vullis, B + 2R VY| L1(Br\Bg,2)
(Bar\B,-1, (V.36)

< Cul|Vo 2oy < Ca [[VA L2 @) + [ Villu@)] < Ca1+C)A

where Cj is a universal constant. From (V.36) we deduce the existence of two constants a and b depending
on £ such that

Va € 0B4-1,.(0) —CnA<v(z)—a<CnpA |, (V.37)
and
Va € 0B4gr(0) —CnA<v(@)—b<CnrA | (V.38)
where C), > 0 only depends on m. Since the functions
b—a ||
+ = log — +C,, A
(@) log R/ 87 ta ¢

are harmonic, and since (V.37) and (V.38) imply

T <v<7t on (Bur \ Ba-1r)
the maximum principle yields
Vi€ Bar\ B —Cm A <v(z) — boa |, @Jra < Cm A (V.39)
aR a~lr m A > IOg R/T g r > Um . .

Let p € (r, R), and define 27 d := faB Opv. Integrating by parts gives

0:/ Av log |x| dx
Bar\B,-1,.

2m 27
=2rd 1og§ —|—/ v(a~tr, ) do —/ v(aR,0) df
0 0

Hence b o A
—a -
— 4
’d log R/r| ~ logR/r (V.40)
Combining (V.39) and (V.40) yields
V& € Bar \ By-1, *CmASI/(SC)fi / Orv logmfaSC’mA . (V.41)
21 dB,.(0) r
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We next estimate the difference [, (0) Ort = Jon (0) Or(v = A). There holds
0= / u Alog(|z|/R) dx = f/ V- Viog(|z|/R) dx
Q Q

— “log(r/R) /63 aTu+/Q(via-vg2) log(|z|/R) do

(V.42)

As seen in the proof of lemma IV.3, the construction of the moving frame {é7, &>} requires to construct

an extension 77 of fig into Br(0). Since {€1, €2} is also a moving frame for i in Bg(0), lemma IV.1 shows

that )
Z/ V& |*dx < C / |Viig]® do < A
‘=1 7/ Br(0) Q

Using this extension, we may also recast (V.42) in form
log(R/T) / Orpt :/ (V+é, - véy) log(|z|/R) dx
OB Br

—/ (V+e, - Véy) log(|z|/R) dx
By

Let W be the solution of
AV =Vte Ve, in Bg(0)

v =0 on 833(0)
As in the proof of lemma V.2, Wente estimates give
V|21 (BR0)) < Co [IVElLBroylIVelLiBro) < Cm A

for some universal constant Cy independent of R. Hence,

/ (V+é) - Véy) log(|z|/R) dx
Br

= }/BR VU Viog(|z|/R) dx

SIV¥[z21(Br0) [IVIog(|z]/R)|| L2 (Br0) < Cm A
On the other hand, lemma IV.3 and lemma IV.1 yield a frame
{1, f2} € W2(B,(0), 8™ ))?
satisfying L
*7 = f1 N\ fa
and
2 ~

Z/ V2 dz < c/ Vi da < O / Viigl? do

i—=1 7 Br(0) B (0) B2y (0)\Br(0)
Clearly, there exists § € W12(B,.,R) such that

ei@(é»l + 152) = f_li + Zf_; ,
and thus B B
51 . Vé’g + V9 = f1 . VfQ in BT(O) 5
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Whence there holds . .
Ve, - Ve, =V4ifi-Vi in B.(0) . (V.47)
Let ¥ be the solution of

szvlfi-vﬁ—wrrl/ ViF VA in B(0)
B,

o =0 on 0B,(0)

Calling again upon Wente estimates (this time with Neuman boundary data) gives the following control
of the L?!-norm of V¢ :

IVl 221 (Br0)) < Co IV fillsron IV 2llLro) < Cm / Vitg* dz . (V.48)
BZT(O)\BT(O)

Consequently, we derive

/ (V1éy - Véy) log(|z|/R) dx glog(R/r)/ ViV +‘/ Vi Vlog(|z|/R) dx
B, B B,
< Cp log(R/7) / Vitgl? da + |V ]| 1215, (0)) IV 10g(|2]/R)|| 2.5 (B (0)) (V.49)
B2 (0)\ B (0)
<Cp 1og(R/r)/ |Vﬁ5|2 dx
B2, (0)\B(0)

Finally, combining (V.43), (V.45), and (V.49) gives the announced

[, o
OB,

log(R/7) < Cp

A +log(R/T) /

Ba,(0)\Br(0)

|Vite]? d:c] . (V.50)

O

VI Uniform L?*!-control of the mean curvature vector of a Will-
more immersion in neck regions

The goal of this section is to prove the following result.

Lemma VI.1 Letm > 3. There exists a constant e(m) > 0 with the following property. Let 0 < 8r < R,
and let & be any conformal Willmore immersion of Br(0) into R™ such that

sup / |Vﬁ§|2 de <e(m) . (VL1)
r<s<R/2J B3:(0)\Bs(0)
We set

A= HV)‘||L2’°°(BR\BT) +/ |Vﬁ§|2 dr
Br(0)

where \ denotes as before the conformal parameter ofg. Then there holds

||6)\H5||L2’1(BR/2\B27~) S C(m,A) s (VIQ)

where ﬁg is the mean curvature vector of the immersion «E_: and C(m, A) is a positive constant depending'!
only on m and A. O

Hthe constant C(m, A) is independent of the conformal type of the annulus.
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Proof of lemma VI.1. According to the work in [Ri2], an immersion € is conformal and Willmore
on Bg(0) if and only if there exists an R™-valued map L (uniquely defined up to an additive constant
vector) satisfying

VL =2V*H —3V*(mq)(H) +*(Viig N H) (VL3)
where * is the canonical Hodge operation on multivectors of R™ and 77 is the projection operator onto

the normal space to &, T3. It is given by two consecutive applications of the contraction operator'? L
with 7 (see (VI.87) in [Ril]):

Ve R™ 75 (W) := (1) AL (il @)
Hence the gradient of 75 in (VI.3) is to be understood as
Ve R™ V(ri) (@) == (=1)™" N (VA) (AL @) + (-1)™ 'aL(Va) L) . (VI1.4)

The first condition to impose on the constant e(m) is that it should be smaller than the one in
lemma V.2, so that the uniform Harnack estimate (V.14) holds on the annulus B,g \ By-1, for every
0 < a < 1. If, in addition, we ensure that €(m) be smaller than the threshold constant appearing the
e-regularity theorem 1.5 in [Ri2], then the uniform Harnack estimate enables'® us to conclude that for
any r € B4R/5(0) \ B5 7‘/4(0) there holds

|Vﬁg($)|2 <C |$|72/ |Vﬁ5|2dx <Ce(m)z™? (VL5)
Baja (0\ Bz /2(0)

where C' is some constant independent of the data of the problem. This implies in particular that

R 157
IViigl 12 (Bar s 00\Bs s o) <4 g Co(m) = €7 Ve(m) (VL6)

Finally, we ask that e(m) > 0 satisfy C’+/e(m) < /n(m), where n(m) is the constant given in lemma V.3.

—

Accordingly, there exist a constant A (which depends a-priori on all parameters r, R, A, and ) and a
constant d such that
|d| < Cp A (VL7)

and
[A(z) — dlog|z| — All Lo (B 0\Bar) < O A (VL)

We introduce for 0 < s < R/2 the function

1/2
0(s) == <s_2/ |Vﬁ5|2 dac)
B2 (0)\B;/2(0)

50(s) < VA Vse (0,R/2) . (VL9)

Clearly,

Inequality (VI.5) gives

D |He(x)| < |Vitg(x)| < C5(Jz]) ¥z € Brja(0)\ Ban(0) . (VL10)

12The contraction operator L is the linear operation defined as follows. For every «, 3, and ~, respectively p, ¢, and
(p — q) vectors in R™, one has
<al B,y >=<a,BAYy >

B3indeed, the proof of theorem 1.5 in [Ri2] requires that the conformal parameter A be “roughly” constant on balls around
the origin. We are instead working on annuli, so the estimate (V.14) is exactly what is needed.
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Clearly, since 8r < R, there holds

R/2
/ 56%(s) ds < log(4) / \Vitg]>dz <2A . (VI.11)
T Br(0)\B,,2(0)

The identity (VI.3) shows that on any dyadic annulus B, \ By included in Bgr(0) \ B,(0), the mean
curvature vector satisfies

AH = % div (SV(wﬁ)(ﬁ) + *(VLﬁg/\ FI))

From (VI.10), a standard argument from the theory of second-order uniformly elliptic equations in di-
vergence form then yields the existence of a constant C; > 0 such that

A | VHAz)| < C) 5(|';|'> Va € Brya(0)\ Bar(0) (VL12)

For any t € (r, R), we denote
. 1 .
L= —— L .
[0B:(0)] JaB,(0)

where the function L is as (VL.10). Using (VIL.3), (VL8), and (VL.12), there holds
|L(x) = Ljay| < / VL] < 27 Cy €202 e (| V@ € Bra(0)\ Bar(0) . (VLI3)
l=]
This implies in particular that
/ A |E(2) — Loy Pde < CoA (VL14)
Bry2(0)\B2r(0)

for some constant Co. Note that we have used (VI.11).
We have next

dL, 1 [*™ oL 3 (1015, - 12 [(ong
_r oL _ o [ l9ma g - i : L1
dt 2r Jo Ot (t,6) df 27r/0 r 00 (H) db+ 27r/0 * v A 40 (VL.15)

Setting a(t) := |L|, and putting (VL.10) into the latter gives the estimate

: d\Ly|| _ |dLs 2 A2
t)| = =|—|<C o4(t VIL.16
)] = [T = |5t < c2e e (VL16)
Whence, using (VI.11), we reach
R/2
/ se|a(s)|ds < 2C%A . (VL.17)
2r
The Harnack estimate (VI.8) yields
eACmA |4 < @) < AFCmA |)d Va € Brs\ B2r(0) (VI.18)

thereby showing that (VI.17) may be recast in the form

R/2
/ st )a(s)|ds < 2C%*eCmA-AN (VI.19)
2

T
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An elementary integration by parts gives for any r <7 < T < R:
T T
/ st a(s)ds = TV a(T) — 71 a(r) — (1 +d) / s%a(s)ds

Hence, since a > 0, we have

R/2
Vd< -1 V 2r<t<R/2 trda(t) < (2r)a(2r) —|—/ s a(s)| ds
o (VL.20)
R/2
Vd>-1 V2r<t<R/2 t'Ta@) < (R/2)1+da(R/2)+/ s'74 Ja(s)| ds
2r

Recall that we still have the freedom to adjust the vector L by an additive constant vector. It will be
convenient to us to choose L in such a way that

If d<—1 we take /

L=0 whereas if dzflwetake/ L=0
0B2,

9BR/2
This particular choice implies
te | Ly =teta(t) <2C%CmA A V 2r<t<R/2 , (VI.21)

where we have used (VI.20), (VI.18) and (VI.19). With the help of an elementary computation, the latter
then implies that .
||€)\(z)|L|I||HL2'°O(BR/2\BQT) S Co(m,A) 5 (VI.22)

for some positive constant Cy(m, A). Combining this inequality with (VI.14) gives
XL (@) || 2.0 (B o\ Bay) < Clm,A) (VI.23)
where C'(m, A) depends only on m and A. Moreover, the estimates (VI.13) and (VI.21) altogether yield
SDNL(@)] < C(A, C) [1+ [2l6(@)] o] < € (m, A) Jo] Va € Brja(0)\ Bop(0) . (VI.24)

Note that we have also used (VI.9).

As is done in [Ri2] (see also section VI.7.2 of [Ril]), we introduce on Br(0) the smooth function S
and the smooth A\®(R™)-valued map R via

VS =L V¢
L. } 3} (VL.25)
VR =LAVE+2 (x(ficgLH))LVE
Since |VE]2 = 2¢2*, the estimates (VL6), (VL.23) give the bound
1922 (B Ban) + IV Bl 2 () < Clm,A) (V1.26)
Furthermore, using (VI.10), (VI.24), and (VI.9), we obtain the pointwise bound
IVS(x)| + |[VR(z)| < C(m, A) |z~ Va € Brjs\ Bar (V1.27)

28



One verifies (cf. [Ri2] and theorem VI.15 of [Ril]) that the following equations® hold
VS = —(x@)-V'R
} } (VL.28)
VR = (-1)" *(ieV'R)+ (xi)V*tS

For any ¢ € (2r, R/2), we let

1 — 1 — 1
Sp = ——— S ) R:zi/ R and ﬁ:zi/ 7
" 10B(0)] Jos, 0 " 19B(0)] Jo, 0 " 10B(0)] Jos. (o)
The equations (VI.28) then yield
s, 1 [*9S 1o/ 10R
ot o), o bOd
( 1)m_11 /2”(4 i) 1aﬁd9 1 2”*( 4)1056119
= (— J— — o —— [ — -
o Jy " T 00 o Jy VT Y o
Note that (VI.10) gives
(@) ~ i < Clalé(al) Vo € Brys(0)\ Bar(0) . (VL30)
Thus, (VI.27), (VI.29), and (VI.30) altogether yield
ds;|  |dR;
— — < A . 1.31
L[S < com, ) o) (VI31)
Hence, with the help of (VI.11), we deduce
&2 (\as, > |di,|
— — tdt < C(m,A) . VI.32
LG+ 1G] | = coma (VI32)

Our study requires the following result, proved in [LaRi].

Lemma V1.2 [LaRi] Let a and b be two functions on B1(0) such that Va € L**° and Vb € L?. Let
0<e<1/4 and ¢ satisfy

—A¢ = 0,0 0y,b — 05,0 05,0 in B1(0)\ B:(0)

Fore <r <1, we set ¢o(r) := (2nr)~! faB ) @, and we assume that

1
/ |go|? rdr < 400 . (VI1.33)
€

M The linear operator e is the contraction which to a pair of p and g-vectors of R™ assigns a (p + q — 2)-vector of R™ in
such a way that
VY daeAPR™ VbeAR™ deb:=alb
and o
VaenPR™ VbeAN'R™ Ve AR™

Go(bAT):=(Teb)ACH (—1)"*@e)Ab .
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Then V¢ € L?(B1,2(0) \ B2:(0)) and there exists a positive constant C independent of € and ¢ such that

IVollr2(B,,200\B2-0) < C Vall2,00 [|Vll2 + C Vol 2B, (0)\ B. (0))
(VI1.34)

+ C[IV@| 2. (B, (0)\B.(0))
O

Applying divergence to both sides of the equations (VI.28) gives the conservative conformal Willmore
system:
AS = —xVi-V'R
(V1.35)
AR = (=1)"(ViieVIR)+«Vii- VS
Owing to (VL.1), (VI.26), and (VI.32), we may apply lemma VI.2 to the system (VI.35), and find

IVSIL2(Br a0\ Bar(0) + VRl L2(Br a0\ Bar0) < C(m,A) (VI1.36)

Since the L?-norm of |x|~! on annuli of the form B,s(0) \ Bys(0) is independent of s, we can use the
pointwise estimate (VI.27) to get an upper bound independent of R and r for

IV S L2(B R, 200\ Br/s(0)UBs 0\ B2 (0) + IV Rl L2(Bg 200\ Br /4 (0)UB4(0)\ B2 (0))

Combining it to (VI.36) then yields
IV S 2281200\ Bar @) + IV R L2(Br a0\ Bar0)) < C(m,A) (VL37)
dR,

dt

s,

This new information, along with (VI.11), is injected into (VI.29) so as to produce
R/2 .
dt < C’/ 5(t) / VS| + |VR]|dt
dt 2 OBy

R/2
\/27‘ T

/2 1/2 1/2
<c </ 52(t)tdt> </ VS|? + VAP dx) < C(m, A)
2r Bry2\B2r

Since the functions S and R are both defined up to an additive “constant”, we have the freedom to
impose the conditions Sa, = 0 and Ra, = 0. From (VI.31), we deduce in particular that

(VL38)

S| + |R:| < C(m,A) Vte (2r,R/2) . (VI.39)
Paired to the pointwise estimate (VI.27) on the gradient of S and R, the latter implies
151120 (B 200\ Bar (0)) F 1Bl L (B 2 (0)\Bar(0)) £ C(m, A) (V1.40)

We are sufficiently geared to apply the following general result, whose proof may be found in [LaRi].

Lemma V1.3 [LaRi] Let a and b be two functions on B1(0) such that Va € L? and Vb € L*. Let
0 <e<1/4 and ¢ satisfy

—A¢ = 0y, 0pyb — 0y bOsra in B1(0) \ B:(0)

Assume that

|¢]]oc < 400 . (VI1.41)
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Then V¢ € L**(By/2(0) \ B2:(0)), and there exists a positive constant C independent of € and ¢ such
that

IVollL21(B, 00\ B (0)) < C IVal2 [[Vbll2 + C @] Lo (B, (0)\B. (0))
v (V1.42)

+ C|IV|lL2(B, (0)\B. (0)
O

Just as we did above, owing to (VI.1), (V1.26), and (VI.40), we apply lemma VI.3 to the system (VI.35),
and find .
IVSNL21(Bry20)\Bar (@) + IVEI L2184 00\ Bir(0)) £ C(m, A) (VL.43)

Since the L*!-norm of |z|~! on annuli of the form B,s(0) \ Bys(0) is independent of s, we use (VI.27) to
get an upper bound independent of R and r for

IVSI L2 (B R 200\ Brya(0) B0\ B (0)) + IVEI L2 (B 2 (0)\ Br )4 (0) 0B (0)\ Bar (0))
Combining it to (VI.43) then yields
IV Sl 2281 000\ B ) + IV Rl 123(B, 00\ Bar (o) < ClmsA) (VL.44)

It is shown in [Ri2] that
4P He =20 = V"S- VE— VRLVYE

In particular, since |V§_]2 = 2¢*, calling upon (V1.44) in the latter yields the announced (VI.2), thereby
completing the proof. O

VII [%-weak energy quantization for the Gauss map of a Will-
more immersion in neck regions

Lemma VII.1 [L?—weak energy quantization for the Gauss map in neck regions] There exists
a constant e(m) > 0 with the following property. Let & be a sequence of conformal Willmore immersions
from Bpg, (0) into R™, with Ry — +00. Whenever r, — 0 satisfies

sup / |Vﬁ5k|2 de <e(m) (VIL.1)
r€(ry,Rr/2) J Bz - (0)\ B, (0)

and'®
Hv)\kHLZ,oo(Qk) +/ |Vﬁ5k|2d:c <A< +4o0 vk (VIL.2)
Qp

where A > 0 is independent of k and Qi = Bg, (0) \ B, (0) ; then

Ve e (0, E(m)) da e (0, 1) s.1. llichsrup H |:L'| Vﬁgk (z)HLOO(BaRkM(O)\Ba*lrk (0)) <e . (VII:})
—+00

Hence, in particular,

Ve e (0, E(m)) da € (0, 1) s.t. lim sup HVﬁgkHLZ'OO(BaRkﬂ(O)\Ba*lrk (0)) <e . (VII4)

k— oo

1535 usual, Ay is the conformal parameter of Ek
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Proof of lemma VIIL.1. Analogously to the argument given in the paragraph following (VI.4) in the
proof of lemma VI.1, the constant £(m) may be chosen so as to ensure that there holds

Vitg (@) < Claf* [ Viig [Pdr < Celm)a™ Vi€ Baup(0)\ Ban(0) , (VILS)
Bs2|(0)\B|z]/2(0)

where C' is some constant independent of the data of the problem. This implies in particular that

IVig, ll2 (B, j2(0)\Bar, (o)) < C' V(M) . (VIL6)

We will argue by contradiction, by assuming that there exists a sequence of conformal Willmore immer-
sions on Bp, (0) satisfying (VII.1) and (VII.2), but for which there exist €1 > 0 and xj, € Q) with

log [zl — +00 , log [zl — —00 (VILT)
Tk k
and with
From (VIL5), we deduce in particular that
> 12 et
|Viig, | do > ol 0 (VIL.9)
Ba|zy | (0\ Bz, 1/2(0)

We next demand that e(m) be smaller than its counterpart from lemma VI.1. Since all the condi-
tions of this lemma are fulfilled, there exist L, € C*(Bg,(0),R™), Si € C*(Bg,(0),R), and Rj €
C>(Bg, (0), A*R™) such that

VAL, = VHy, — 3w, (VHi) + * (V'iiig A Hy)
VS = Ek . ng (VH.lO)
Vﬁk = Ek/\ng + Qﬁk/\VJ‘&

In the course of the proof of lemma VI.1, we have seen that
HeAkL{k |‘L2v°°(BRk/2\Bzrk) + ||VSk||L2’1(BRk/2\BZTk) + ||VRk||L271(BRk/2\BZTk) S C(m’ A) ! (V1111>

Moreover, we have the conservative conformal Willmore system

ASk = 7(*Vﬁ§k) . VLR’}C
AR, = (1) (Vig o VERy)+ (+Viig ) - VS, (VIL.12)
OAE, = VLS, V& — VR,LVLE

Consider the conformal mapping

-

Exly) = e (& (Jan| y) — Enlan))
An elementary computation shows that
Vit

7 (W) = lzil Varig, (Jzely)
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and ~
VyHi(y) = |zg| e ) Vo Hy |kl y)

where H), is the mean curvature vector of the immersion E x- The corresponding R"-valued map Ly
satisfies

vyik(y) = |z e wlw) Vrf;kﬂka) )
so that ~
Li(y) = e ) Li(|ag| y)
Clearly, the conformal factor of the rescaled immersion satisfies A (y) = A (|zx| y) — Ax(2x). This implies

in particular that the corresponding Sp and Ry, are given by

Sk(y) = Sk(|zk|y) and ﬁk(y) = Bi(|zkly)

We thus see that the maps Sy and R}, behave under rescaling like the Gauss map ﬁg. This remarkable
fact was first observed in [BR2], where it played a decisive role. From the latter and (VIL.11), it follows
that ~

limsup || VS L2y + IV Rill L2y < C(m, A) (VIL13)

k—+oo
for any compact subdomain K of C\ {0}.
The pointwise control of the conformal factor in neck regions provided by lemma V.3 shows that the

sequence of Willmore immersions &, satisfies

lim sup HVT_L'E ”LT&(C\{O}) < 400 (VIL.14)
k—+o00 k
and ~
limsup || log V&l e (c\{oy) < +o0 (VIL15)
k—+oo

From the work in [Ri2], we conclude that for all [ € N, the sequence &, converges in CL. _(C\ {0}) to a

Willmore immersion € of C\ {0}. This strong convergence implies that the condition (VIL9) and the
system (VII.12) pass to the limit. Hence,

2
B3(0)\By,2(0) > ¢
and =
ASec = —(xViiz ) V*Roo
AR, = (—1)" * (Vi .vlﬁoo)+(*Vﬁg ) VS (VIL17)
462%01?5 = 9AE, = V'8, VE, — VRELLVE,

On one hand, we obtain from (VIIL.6) that
||Vﬁg ||L2,oc((c) <Cv/ E(m) . (V1118)
On the other hand, it follows from (VII.13) that

IVSssllrz1(c) + [VRso|l 221y < C(m, A) < +00 (VIL.19)
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Applying to the system (VII.17) the Wente inequality from lemma IV.2 with (p,q) = (2, 1) yields now

IVSallzznc) + VRl L2acy <C IVitz llzz=( {HVS’OOHLZJ(C) + ||vgm||L2v1(C)}
(VII.20)

< Cp v/e(m) {HVSOOHLZJ(C) + ||véoo||L2v1((C):| )

where we have used (VIL18). Accordingly, when C,,+/e(m) < 1, we deduce that VS, = 0 and VR, = 0.
Injecting this information in the last identity of (VIL.17) gives

H-

0
£no

In particular, since the (weighted) mean curvature vector is the trace part of the gradient of the Gauss
map, it follows easily that

Vit |2 = —2eP~K- on C

;. i : (VIL.21)

where KE is the Gauss curvature of the limit immersion 500.

Let us next choose the constant e(m) small enough that we can apply lemma IV.3 with the condition
(VIIL.18). Namely, on any ball B,(0), we construct a moving frame {€}, €4} satisfying

, div (e -Vey) =0

xitz = e nef

oo

and
/ |Ver|? +|Vey|? < C/|Vﬁ; ? . (VI1.22)
Br(0) c  fe

We now consider a sequence of radii p; converging to infinity. Extracting a subsequence gives the
existenceof a limiting frame (€5°, €5°) on C satisfying

wiin = EPANES . div(EX - VER) =0 |

500
and
/ Ve |? + |Vese|> < © / |Vi= > . (VIL.23)
c c  fe
We have at every point of the minimal conformal immersion {OO the identity

e”“’Kg = _—Vvier.vee

oo

Integrating over C then yields

/K: e dy :/défo/\d€2°° =0
c &= c
Paired to (VII.21), the latter implies that Vﬁg = 0, which contradicts (VII.16). This is the desired

contradiction, and thus lemma VII.1 is proved. b O
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VIII Proof of theorems
VIII.1 Proof of theorem 1.2

Let ®, be a sequence of Willmore immersions of ¥ with uniformly bounded energy

limsup E(®}) < +oo

k—+oo
and such that the conformal class of the induced metric g = §Zng remains in a compact subdomain of
the moduli space of X.

We consider a subsequence, still denoted <f)k, as given by lemma II.1. Let Zj be the corresponding
sequence of Mobius transformations, and let fi be the sequence of Lipschitz diffeomorphisms of ¥, as
given by lemma II.1. We set §k = E} 0 @k o fx. The conclusion of lemma II.1 states that §k weakly
converges in W22 to a weak immersion foo, away from finitely many points a;. This limiting immersion
might be branched at the points a;.

Let hi be constant scalar curvature metric with respect to which Ek is conformal, and let uj be the
function satisfying
gr = gzanL = €2uk h/k;

The classical Liouville equation reads
AhkUk + ng€2uk = th

Since hy, strongly converges to some limiting constant scalar curvature h, classical results from geometric
analysis on manifolds (see for instance [Aub]) show that the gradient of the Green function associated
with the Laplace-Beltrami operator Ay, is uniformly bounded in L?°°. Hence,

||V’ukHL2,oo(E) S C |:/ |ng| d’UOlgk +/ |th| d’UOlhk:| S C [E(ék) + 27T|X(Z)| s (VIIIl)
z P

where the L%*°-norm is to be understood with respect to a reference metric go on ¥. As before, x(¥)
denotes the Euler characteristic of X. We define the constant

A = sup B(By) + || Vug| 2o (m) < +00 . (VIIL2)
keN

Owing to the e-regularity theorem 1.5 in [Ri2], the sequence 5_;6 actually converges strongly in C!, (X
{a1,...,an},R™), for all [ € N. Namely,

& — € in cl.(2\{a,...,an},R™) . (VIIL3)

Accordingly, the limiting immersion 500 is Willmore, although a priori only away from the points
{a1,...,an}. Since & is Willmore, for any fixed small radius p > 0 and any ¢ = 1,..., N, one has

div 2VH~—3V ) — (Vi AH=)) de=0
[ (e J(Hg,) — (i, A 1))

where B, (a;) is the geodesic ball centered at a; and of radius p for the flat metric, in some converging
conformal coordinate system for £/ gr=. Whence,

/6‘3,)(@1) 28VH5k - 381/(7Tﬁ§k ) gk) + *(877756 A ka)) pdd =0 |,
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where v is the unit normal vector x/|z| and 7 the unit tangent vector z/|z| to the boundary of B,(a;).
The strong convergence of £ to &, enables passing to the limit in the last identity, and we thus find

oo

/ 20,z —30,(nn, Yz )+ %0z Az ) pdo =0
€00 Eoo €oo oo
0By (ai)

for all fixed p.
This is precisely the condition required to apply the “point removability” theorem established in [Ri2].

In particular, EOO extends to a (possibly branched), smooth Willmore immersion in B,(a;). More detailed
information on the behavior of the immersion near the points a; are given in [BR2].

We now choose a fixed £y > 0 smaller than the constants e(m) of lemmas VI.1 and VIL.1. For this
particular choice of £g, we apply the bubble-neck decomposition procedure outlined in proposition III.1.
Owing to (II1.13), both lemma VI.1 and lemma VIIL.1 apply in each connected component of Q(«),
which, recall, is a union of disjoint annuli. From lemma VI.1, we thus have

. N
1]1::1?;1;};) He Hgk HLz,l(Qk(l/g)) < C’(m, A) . (VIII4)

As for lemma VII.1, it yields
Ve>0 da >0 s.t. ||Vﬁ5k ||L2,oo(Qk(a)) <e . (VIIL5)

Combining this last assertion with the result of lemma V.1 implies that

Ye>0 Ja >0 s.t. / K¢ dvolg, | <e . (VIIL.6)
Qe (o)
Altogether now, (VIIL.4) and (VIIL5) give
Ve>0 Ja>0 FJkgeN st. Vk>k
(VIILT)

= = o1/2 = 1/2
le*H, Il ) < 1€ He 125 @, oy 1167 He, 155 0, oy < VEmAY

where we used the fact that L2 is the dual space of L?!.
Combining (VIIL.7) and (VIIL.6) shows that

lim  lim Vit [*dz = 0. (VIILS)
k

a—0 k—+oo Qk(a)

This is the no-neck energy property which we aimed at establishing. To finish the proof of theorem 1.2,
there remains to identify the energy of the bubbles as converging in the limit to that of Willmore spheres.
This is what we do below.

Leti€ {l,...,N} and let j € {1,...,Q"}. From (III.15), on the bubble domain
B(i,j, , k) = Borlp;;j (:c;’]> \ szep,j Bap;ic,j (;L';C’J ) ,

there is no concentration of energy. Hence, arguing as in the proof of lemma V.2 (see also lemma IIL.1 in
[Ri3]), the conformal factor satisfies a uniform Harnack estimate:

SUD{zeB(i,j,a,k)} e (x)

- inf{meB(i,j,a,k)} ek (:C)

Vo<a<l 3Ca>0 st <Co . (VIIL9)
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Choose an arbitrary point

27 € Bli,j, 0, k) N B, (a47) \ (U] reris By s (2} )) ,
where M >card(I%7) ; and set A(i, 4, k, @) := A\g(x1). We introduce the renormalized Willmore immersion
W(y) = eI G (1 g+ a) = 67|

We can extract a subsequence in such a way that the following limits exist:

Mll

N |
Ly “k

vV j eI lim =al € B1(0)\ {0}

k——+oo p}c’]
As the energy does not concentrate on any B(i, j, a, k) for 0 < a < 1, we obtain, using once more the
e-regularity and the local control of the conformal factor ensured by (VIII.10), that
gk — goo in Cvlloc((C \ Uj’EIi'j {a’gd }) VieN )
where £__ is a Willmore immersion of C \ Ujrerii {a{’j/}. Suppose that

/ \VE | dr < +o0
C

Then, using the stereographic projection of S? onto C with respect to the north pole, E realizes an
immersion of 5%\ Uj/¢ri. {a] ' } U{North} included in a bounded domain. Just as we explained above

for the limit immersion £, one can remove the singularities Ujrerii{al 7’ } U {North}, which possibly
realize branch points of our Willmore S?. We have moreover

lim  lim e |Hg [P =W(EL) - (VIIL.10)

a—0k—+oco B(i,j,0,k)

On the other hand, suppose that!'®
/ IVE|? doy dag = +00
C
Following [Ri4], we can find a point p; € R such that

VEkeN e Abd0k) [{k(z) - é}c(z;cj)} N Bi(px) =0 and lim sup |px| < +00

k——+oo

Let Zj, be the inversion with respect to px, and Ek =Ty 0 Ek We may assume, modulo extraction of a
subsequence if necessary, that the sequence pj converges to a point po,. We let Z, be the inversion in
R™ with respect to this limit-point. There holds

-

G —fe=Twole i Cu(C\Uper{al’})  VIEN |
where £ is a Willmore immersion of C \ Ujrerii {a{’j/} satisfying

/ IVE | dr < +o0
C

16 This should correspond to the case when A(i, j, a, k) — —oo.
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Arguing as above, 500 extends to a smooth, possibly branched, immersion of S2. Using lemma A.4 in
[Ri4], we then obtain that

i I 2% o Pde = W(E ) — 4 0 VIII.11
agnl()k—lr—i{loo B(i,j,a,k)e | €k| €z (goo) wvo ( )

where 6 is the integer density of EOO(C) at the image point 0 € R™.

Altogether, (VIIL.3), (VIIL.10), and (VIIL.11), imply that there exists a subsequence (indexed as the
original, for notational convenience) such that

p ~ q

lim W (Pg) = W (&) + Y _W(E )+ {W(ﬁtoo) —4mbl| . (VIIL.12)

k—
teo s—1 =1

The index s is used for the first alternative, in which the bubble has no infinite end ; while the index ¢
is used for the second alternative, in which the bubble has at least one infinite planar end, and it must
thus be inverted to become compact. This is exactly the desired energy identity (1.2), thereby ending the
proof of theorem 1.2. O

VIII.2 Proof of theorem 1.5

Let ®, be a sequence of Willmore immersions satisfying
W () < min{8m,wy"} — 4

We want to show that it is possible extract a subsequence <f>k/, and to find a sequence of diffeomor-
phisms frs of ¥ and Moebius transformationa =/, such that
G = Fp 0By 0 frr — Eno strongly in C'(¥) VIeN . (VIIL.13)
From the work in [Ri4] (cf. also [KuLi]), the sequence of conformal classes of the metrics induced by

®y, remains in a compact subdomain of the Moduli space. Theorems 1.3 and 1.4 whence apply.
If
lim W(®y) =W (Ex)
k' —oc0

then from theorem 1.3, we get (VIIL.13) directly. If not, then there must be a bubble. We take it to
be the most concentrated one, centered at xp and of radius py, and converging to a point a'. As is
explained at the end of the previous section, we can find a Moebius transformation Ay such that in local
conformal coordinates there holds

A 0 & (prwy + x1) — €

where EOO is a Willmore sphere. Assume this sphere is homothetic to the round sphere. Then, if Ay
contains no inversion and {OO is of the type ns from theorem 1.2, we conclude that
lim W(Bp) > W(ls) +WI(E,) > dn +4m =81,

k! — o0

which is a contradiction.
If now Ay contains an inversion, then modulo a dilation in the image, we can arrange for & (pry + Tk )
to converge strongly to a plane, and thus

/ Vw| =0
Bpk/ (k)
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This contradicts the very definition of a bubble, which requires that

/ Ve | > e(m) >0
BPk/ (Ik’)

Accordingly, EOO can not be homothetic to the round sphere. Calling upon the results from [Bry] and
[Mon], it follows that

lim W(®p)= lim W(Ag o&p) > lim W(Aw o & (pry +zp)) — W(EL) > 8,
k' —o00 k' —00 k' — 00
which is again a contradiction.

Therefore, we have shown that in all cases, the assertion (VIII.13) holds, thereby proving theorem IL.5.
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