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Abstract

In the study of regularity of weak harmonic maps from the unit disc B? into
the unit sphere S™~! C R™, i. e. maps in W3 (B% R™) such that the values
are almost everywhere in S™! and which solve the following equation (in
the sense of distributions)

—Au = u|Vul? (1)

there are three major observations:

Conservation laws
It was observed by Shatah (see [46]) that u solves (1) if and only if the
following conservation law holds

div(u'Vu' —uw/Vu') =0 for alli,j € {1,...,m}.

Antisymmetry
Due to the above conservation law and the fact that V! = 0, Hélein
(cf. [26]) rewrote the equation (1)as follows

m

—Aut = E u'Vu; - Vo’
i=1
m

= Z(uiVuj —u,;Vu') - V!

=1
m

= Y v
Jj=1

where obviously Q! is antisymmetric!

Higher integrability
Last but not least, from Wente’s work ([66]) (see also Coifman et al. ([16])
and Tartar ([56])) it is known that the right hand side of Au’ =377 | Q- Vu/

is not even in L! but belongs to the Hardy spaces $*, a strict subspace of L.

v
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Thus, the additional structure leads to higher integrability, which again
gives rise to improved regularity results in dimension n = 2.

What has be observed in the context of harmonic maps into spheres was
generalised by Riviere in ([38]) to the study of problems of the form

Au= Q- Vu. (2)

where (2 is antisymmetric.

By construction of suitable gauge transformations he was able to rewrite
such equations in divergence form and applied this fact in the study of
regularity questions. Interestingly, his approach was also applicable - with
the necessary modification - to the study of Willmore surfaces ([41]).

The above cite article [38] is the point of departure for the present thesis:
We will prove a generalisation of Wente’s result for arbitrary dimension (part
I1).

Once such an assertion is at hand, we will study the effect of this result in
the framework of equations of the form of (2) (part III) and in part IV -
motivated by a recent work of Riviere ([39]) - also to problems of the form

Au = Qu.

In part V we discuss some related minor questions which arose in the previous
parts.

The first part of the present work is devoted to some preliminary ”warm up”
results, and in the Appendix, we will provide all the necessary definitions,
illustrated and enriched by the most important theorems and close with two
alternative proofs of Wente’s result, one of which contains the crucial ideas
which lead to our generalisation mentioned above.



Zusammenfassung

Im Rahmen der Regularitatsfrage von schwach harmonischen Abbildungen
von der Einheitskreisscheibe B? in die Sphire S™ ' c R™, d. h. Abbildun-
gen in W3 (B% R™), so dass die Werte fast iiberall in S™ ! liegen und (im
Sinne der Distributionen ) die foldende Gleichung erfiillen

—Au = u|Vul|? (3)
haben sich drei essentielle Beobachtungen herauskristallisiert:

Erhaltungssatze
Shatah (vgl. [46]) hat bemerkt, dass u die Gleichung (3) genau dann erfiillt,
wenn der folgende Erhaltungssatz gilt

div(u'Vu! —uw/'Vu') =0 for alli,j € {1,...,m}.

Antisymmetrie

Dank des obigen Erhaltungssatzes und unter Beriicksichtigung der Tatsache
>, WVl =0, ist es Hélein (vgl. [26]) gelungen, die Gleichung(3) wie folgt
umzuschreiben

m

—Au' = E u'Vu; - Vu’
i=1
m

= Z(uiVuj —u,;Vu') - V!l

j=1
- Yo
j=1
wobei offensichtlich Q; antisymmetrisch ist!

Hohere Integrabilitat
Zu guter Letzt wissen wir aus der Arbeit von Wente (vgl.([66]) (siche auch

vi
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Coifman et al. ([16]) und Tartar ([56])), dass die rechte Seite von Au’ =
2;11 Q; - Vu/ nicht nur in L' sondern sogar im Hardy Raum $' liegt,
wobei letzterer ein strikter Unterraum von L! ist. Mit anderen Worten,
die zusatzliche Struktur fithrt zu hoherer Integrabilitiat, welche wiederum
- in Dimension n = 2 - zu verbesserten Regularitatsresultaten fiihrt.

Die oben beschriebenen Beobachtungen fiir harmonische Abbildungen mit
Werten in einer Sphéire wurden von Riviere in ([38]) im Zusammenhang mit
dem Studium von Problemen der Form

Au=Q - Vu. (4)

wobei (2 antisymmtrisch ist, verallgemeinert.

Durch Konstruktion einer geeigneten Eichtransformation ist es ihm gelun-
gen, Probleme dieser Form in Divergenz-Form umzuschreiben und diese
Umformulierung im Kontext der Regularitatsfragen anzuwenden. Interes-
santerweise lasst sich dieser Ansatz - mit den notwendigen Anpassungen -
sogar im Zusammenhang mit Willmore Flichen anwenden([41]).

Die oben zitierte Arbeit [38] bildet den Ausgangspunkt fiir die vorligende
Dissertation: Wir werden eine Verallgemeinerung des Resultats von Wente
fiir beliebige Dimension beweisen (Teil II).

Ist einmal ein solches Ergebnis zur Hand, werden wir es im Rahmen von
Problemen, die sich in der Form von (4) formulieren lassen, anwenden (Teil
III). In Teil IV werden wir uns schliesslich - motiviert durch einen aktuellen
Artikel von Riviere ([39]) - Problemen der folgenden Form zuwenden

Au = Qu.

In Teil V werden wir einige kleinere, verwandte Fragestellungen behandeln,
die sich aus dem Kontext der erwahnten Probleme ergeben.

Der erste Teil der Arbeit ist einigen Vorbereitungen gewidmet, und im Ap-
pendix finden sich alle verwendeten Definitionen, zusammen mit den wichtig-
sten verwendeten Theoremen. Schliesslich présentieren wir im Anhang zwei
alternative Beweise des urspriinglichen Resultats von Wente, von denen einer
bereits die grundlegenden Ideen enthalt, die bei unserer Verallgemeinerung
essentiell sind.



Introduction

In this section we will give an overview of the present work, describe the
larger context of our results and point out the guidelines and major ideas
whereas the technical details are carried out in the subsequent chapters.

For the sake of simplicity, in what follows we will use the abbreviation a, for
0

Zq.

ox

Our work was motivated by Riviere’s article about Schrodinger systems with
antisymmetric potentials [38], i.e. systems of the form

—Au=Q-Vu (5)

with v € Wh?(w,R™) and Q € L?*(w, so(m) ® A'R"), w C R".

The differential equation (5) has to be understood in the following sense:

For all indexes i € {1,...,m} wehave —Au’ = 7" | QF-Vu/ and L*(w, so(m)®
A'R™) means that Vi,j € {1,...,m}, Q) € L*(w,A'R") and Q) = —Q.

In particular, it was the result that in dimension n = 2 solutions to (5) are
continuous which attracted our interest.

The interest for such systems originates in the fact that they "encode” all
Euler-Lagrange equations for conformally invariant quadratic Lagrangians in
dimension 2 (see [38] and also [25]).

In what follows we will take w = B™, the n-dimensional unit ball, centred at
the origin.

In the above cited work, there were three crucial ideas:

e Antisymmetry of (2
If we drop the assumption that 2 is symmetric, there may occur solu-
tions which are not continuous as the following example shows:
Let n =2, u' = 2loglog + for ¢ = 1,2 and let

AVZTR |
Q_( 0 Vu2)

viil
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Obviously, u satisfies equation (5) with the given Q but is not contin-
uous.

e Construction of conservation laws
In fact, once there exist A € L>(B", M,,,(R)) N W'?(B", M,,,(R)) such
that
d*(dA — AQ) =0. (6)

for given Q € L*(B", so(m)® A'R™), then any solution u of (5) satisfies
the following conservation law

d(xAdu + (—=1)""'(*B) A du) = 0 (7)

where B satisfies —d*B = dA — A().

The existence of such an A (and B) is proved by Riviere in [38] and
relies on a non linear Hodge decomposition which can also be
interpreted as a change of gauge. (see in our case theorem 24)

e Understanding the linear problem
The proof of the above mentioned regularity result uses the result below
for the linear problem:

Theorem A (/66],[16], [56])
Let a,b satisfy Va,Vb € L? and let ¢ be the unique solution to

—Ap = Va- Vb= x(da A db) = a,b, — a,b, in B}(0) (8)
¢ =0 on dB%(0).

Then ¢ is continuous and it holds that

lellos + [1Vellza + [Vl < Cl[Vall2 [[VO]]2. (9)

Note that the L*°-part in the above estimate is the key point for the
existence of A, B satisfying (6).

A more detailed explanation of these key points and their interplay can be
found in Riviere’s overview [40].

Our strategy to extend the cited regularity result to domains of arbitrary
dimension is to find first of all a good generalisation of Wente’s estimate.
Here, the first question is to detect a suitable substitute for L? since obviously
for n > 3 from the fact that a,b € W? we can not conclude that ¢ is
continuous. So we have to reduce our interest to a smaller space than L?. A



CONTENTS X

first idea is to look at the Morrey space M7, i.e. at the spaces of all functions
f € L} (R™) such that

loc

1fIM5]| = sup sup R'="/2|| f|L*(B(x0, R))|| < oo

zoER™ R>0

The choice of this space was motivated by the following observation (for
details see [42]):
For stationary harmonic maps u we have the following monotonicity estimate

T,2n/ |VU|2 S R2n/ |Vu|2
Bl (wo) B%(@o)

for all » < R. From this, it is rather natural to look at the Morrey space M3.

Unfortunately, this first try is not successful as the following counterexample
in dimension n = 3 shows:
Let a = & and b = £. As required Va, Vb € M3(B3(0)). The results in

|z ||
([16]) imply that the unique solution ¢ of (8) satisfies V¢ € /\/llg but ¢ is
not bounded!
Therefore, in [43] the attempt to construct conservation laws for (5) in the
framework of Morrey spaces fails.

Another drawback is that C'**° is not dense in M$. This point is particularly
important if one has in mind the proof via paraproducts of Wente’s L> bound
for the solution .

In this paper we shall study L*> estimates by replacing the Morrey spaces MY
by their "nearest” Littlewood Paley counterpart, the Besov-Morrey spaces
BR,@Q, i.e. the spaces of f € &' such that

(D IIF o FIMERYE) < o0
j=0

where ¢ = {p;} 7 is a suitable partition of unity.

It turns out that we have a suitable density result at hand, see lemma 6.
These spaces were introduced by Kozono and Yamazaki in [29] and applied
to the study of the Cauchy problem for the Navier-Stokes equation and sem-
inar heat equation (see also [32]).

Note, that we have the following natural embeddings: B?vzgp C M3 (see
lemma 1) and on compact subsets BR/‘ELQ is a natural subset of L? (see lemma
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5).

The success to which these Besov-Morrey spaces give rise relies crucially on

the fact that we first integrate and then sum!

In the spirit of the scales of Triebel-Lizorkin and Besov spaces (definition are

restated in the next section) where we have for 0 < ¢ < oo and 0 < p < o
B;,min{p,q} C inq C B;

max{p,q}

and due to the fact that for 1 < ¢ <p < o0

1l = || (17077
=0

My

it is obvious to exchange the order of summability and integrability in order
to find a smaller space starting from a given one.

A more detailed exposition of the framework of Besov-Morrey spaces is given
in the Appendix.

We have
Theorem B
i) Assume that a,b € B9\4g,27 and assume further that
g, Ay, by, by € B?WSQ where x,y = z;, z; with i, j,€ {1,...,n}.
Then any solution of
—Au = azb, — ayb,
s continuous and bounded.

ii) Assume that ay,a,,b, and b, are distributions whose support is con-
tained in B"™ and belong to B?\Agm n > 3.
Moreover, let u be a solution ( in the sense of distributions ) of

—Au = azb, — ba,.

Then it holds
Vu € B?\Ag,l'
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iii) Assume that a,, ay, b, and b, are distributions whose support in B™ and
belong to B?v(gg-
Moreover, let u be a solution ( in the sense of distributions ) of

—Au = azb, — ba,.

Then it holds
V?u € By C B

Remark

e If we reduce our interest to dimension n = 2, our assumption in the
theorem below coincide with the original ones in Wente’s framework
due to the fact that M3 = L? and By, = L* = Fy,.

e Obviously we have the a-priori bound

lulloe < C(llal Biay ol + [[Val Bigg oll) (111 Biag ol + [[VE] Bigg o)

e Now, if we use a homogeneous partition of unity instead of an inho-
mogeneous as before, our result holds if we replace the spaces B?vtg,z
by the spaces /\/797272. For further information about these homogeneous
function spaces we refer to Mazzucato’s article [32].

e Note that the estimate Vu € B§ »y implies that u is bounded and
continuous.

As an application of what we did so far, we would like to present an adapta-
tion of Riviere’s construction of conservation laws via gauge transformation
(see [38]) to our setting, more precisely we are able to prove the following
assertion:

Theorem C Let n > 3. There exist constants e(m) > 0 and C(m) > 0
such that for every Q € Bjp o(B", so(m) ® A'R™) which satisfies

120B}y ol < £(m)

there exist A € L>(B", Glm(]R))ﬂB}V[g,2 and B € B/l\/lg,z(Bn7 M,,(R)®A*R")
such that
1)
dg =dA—AQ = —-d*B=—%xd*x B
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i)

||VA|B9\4§,2||+||VA_1|B?\/[3,2||+/B [|dist(A, SO(m))|[5, < C(M)[|Q By |l

iii)
IV B| By oll < C(m)[|Q] By ol

This finally leads to the following regularity result:

Corollary D Let the dimension n satisfy n > 3. Let e(m), 2, A and B be
as in theorem 25. Then any solution u of

—Au=Q-Vu
satisfies the conservation law
d(xAdu + (—=1)""*(*B) A du) = 0.

Moreover, any distributional solution of Au = —§ - Vu which satisfies in
addition
Vu € By,

18 continuous.

Remark Note that the continuity assertion of the above corollary is already
contained in [42], but our result differs from [42] (see also [44] for a mod-
ification of the proof of Riviere and Struwe) in so far, as on one hand we
do not impose any smallness of the norm of the gradient of a solution and
really construct A and B (see theorem 25) and not only construct Q and &
such that P~1dP + P~'QP = *d¢, but on the other hand work in a slightly
smaller space.

A second major input comes from the natural question what happens if in
equation (5) the right hand side depends on u instead of Vu, more
precisely if we replace the right hand side by the product of an antisymmetric
matrix and the (vector valued) function itself, i. e. if we study

—Au = Qu. (10)

A first answer is again give by Riviere who proved in [39] that under the
hypothesis that u belongs to L=-2(B™ R™) and Q € Lz(B", so(m)) where
n > 3 the original equation (10) can be written in divergence form and that

under the same assumptions u € LS. N Wfof(B”)
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Apart from the structural link between the two problems (5) and (10) there
is the deeper connection that in both cases the improvements rely on gauge
transformations in the construction of which the fact that the potential {2
is antisymmetric is a crucial ingredient.

Our goal is to present a possible generalisation in so far that we start with
the hypothesis that isnsupported in the n-dimensional unit ball and belongs

to the Morrey space MJ, i. e. satisfies

1fIM5 || = sup sup R*"/?||f|L*(B(xo, R))|| < oc.

zoER™ 1>R>0
More precisely, we will show that

Theorem E Let n > 4 and let m € N*.
Assume that uw € M7 (B™,R™), Au € L}, and Q € M;2(B", so(m)) such that

[

where € is given by the theorem below.
Then
—Au = Qu (11)

15 equivalent to

div(AVu — VAu) =0 (12)
where A is again given by the following theorem.

Theorem F Let n > 4 and let m € N*.
Then there exists a constant € > 0 but small enough such that in a neigh-
bourhood of the origin, there exists a map

(B™,s0(m))

S: My} —  I®(B")N W;@% (B", Gl,n(R))
Q — A
with the following properties

1)

AA+AQ =0
i)
[Al|lz=(B") = sup  |A(z)X[<1
z€Bn Xesm!

iii) A is invertible almost everywhere and A~' € M? where % >a
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iv) there exists a constant C' > 0 such that

ATV Al ) + VAl lwn , o <Rl
M,

provided that ||| ‘M%

2

<e.

2

n
2
2
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Part 1

Preliminaries



In this first part, we will collect and prove some additional, technical lemmas
which will turn out to be not only interesting in itself, but also very helpful.



Chapter 1

Additional results for
Besov-Morrey spaces

Once one is working in the framework of Besov-Morrey spaces, it is natural
to ask for relations of these spaces to the standard Morrey spaces. A first
answer to this question is given here:

Lemma 1. Let 1 <g<2,1<qg<p<ooandr <q. Then
Bjyr, C My

and
0
Ny, » C M.
Proof of lemma 1:
We start with the following observation.
Let o € R™ and r > 0 and recall that 1 < ¢ < 2 and r < ¢. Then for

fe B?vt’g,r we have

</Br(wo) (g |fs’2)g>tlz

IN

e 1
3 1)
N .

" q
DoIf ||qu(Br(:co))>
s=0

17114535 )7)
=0

o0
)Y )
s=0

g

V)
=

IA
VRS VS VRS VS VS
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And we continue

o

</Br(a;0)(§|fs|2)g); < rZ—Z<§Hsz3MZ>
= (L IPI,)
s=0

o0 1
n_n
= ra p(ZHfSH,qu>q
5=0

n

= 1o 2 |[f1 Byl

< Cri2||f1Be,l

Q|

From the last inequality we have that for all » > 0 and for all z, € R"

< C||f1B° .
B o)) = 1B .|l

This last estimate together with the result quoted below from [31] implies
that f € M?.
The assertion in the case f € Nz?,q,r is the same.

Proposition 2. ([31]) Let f € M} with 1 < ¢ < p < oo. Then the two

norms
0 1
(1)
s=0

My
and

11| v

are equivalent.
Sumilar for f € MY.

From this result we immediately deduce the following corollary.

Corollary 3. Let 1 < ¢ < 2,1 < qg<p<ooandr < q and assume that
f e B, has compact support. Then f € L9.
q»

This holds because of the preceding lemma and the fact that for a bounded
domain € we have the embedding MP(2) C L(2).

Similar to the result that W'? = F, 1 < p < oo we have the following
lemma.
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Lemma 4. Assume that f is a compactly supported distribution. Then, if
1<q¢<2, 1<g<p<ooandr <q, the following two norms are equivalent

1/ 1B ol + 1V f 1Bl

118zl
Proof of lemma 4:

i) In a first step we will show that if f € B/l\/tg . there exist a constant C
- independent of f - such that

1B || + IV F 1B ol < ClIf B, -

Obviously, we have that

1BV || < [1f1Bre |-

Moreover, we observe that
VA = (1T lg)”
5=0

< (TP leg) " + N llag

IN

(2P Ig) + Cllfllag
j=1

where for the first addend we used proposition 93
with the necessary adaptations to our situation

and for the second addend we used lemma 98
and the observation F~(Epof) = F ' (Epo) * f.

Ol |1Bhg Il + CII B |

because of lemma 1

Cllf 1Byl + ClLF Bl
/1B .

IA

IN N

as desired.

ii) Now, we assume that f satisfies

1 1Bz |+ IV F 1B, || < 00
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We have to show that this last quantity controls
1
1£1Bhg I

In fact, we calculate
o0 1
1Bl = (32711 Ny
§=0

Nl + C (3027 NNy
j=1

Cllf° 1B, + ClIV B, |l
again by proposition 93
CUIF 1Bz + IV F1 B, D)-

IN

IN

IN

O

Moreover, also the fact that for a compactly supported distribution the ho-
mogeneous and the inhomogeneous Sobolev norms are equivalent, we have
the following result.

Lemma 5. Let1 <¢g<2,1<q<p<o0,2<p,r<qandn>3. Assume

that the distribution f has the following properties: f has compact support
and Vf € B.(/)\Agr' Then

f € By,
Proof of lemma 5:

According to lemma 4 it is enough to show that f € B?le .- First of all, we
q»
observe that

0
B./\/lp r

Bl

[l | < |17

< C(izj’“llfjﬂ’“Mg)1
=0

< (ST Ing)
=0

< VB, Il

Now, it remains to estimate || f°]| vp:
It holds

Z |£|2€2f800
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Next, due to lemma 1 and its corollary we know that f € L? and in particular
- since f has compact support f € L' so & f € L™ for all i. Moreover, thanks
to our assumptions

1 )
goom € L»-1 where I% € [1,2].
So, for all possible ¢
§i . p b
o5& € Lr 1.
Ul
From this we conclude that
0
fferrc My,
and finally

1Bl < 1 Mg + 1 ez

< N0l +C|| D0 F 1B,
j=1

< CUVAB N +C|| X 1B,
j=1

< OlIVfIBe, -

As a by-product of our studies we have the following density result.

Lemma 6. Let 1 < g<p<oo,1<r<ooands €R. Then Oy is dense
in Ny, . respectively in ./\f;w and ijg’r where Oy denotes the space of all
C*°-functions such that V3 € N" there exist constants Cz > 0 and mg € N
such that

10° f(x)| < Cs(1 + |z|)™ Vo € R™.
Moreover, if f € Ny v or fe Bf\/tgr’ withs>0,1<¢g<2and1 <<p< o0
has compact support, it can be approzimated by elements in C3°.

Proof of lemma 6:

Density of Oy in N, . respectively in Bijg,r

The idea is to approximate f € N5 . by fn:=> ;"

From the definition of the spaces N, . we immediately deduce that there
exists NV € N such that

0 1
(3 291y )" <

j=N+1
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What concerns the first contributions, i.e. f%-f~, we know that

N
ij =: fn € O

=0
So,
o0 1
1 = twINs gl < (02 21 F I, ) < Cs

j=N+1

where C' does not depend on f. This shows that fy approximates f in the
desired way.

The proof in the case Bj\/lg,r is the same - with the necessary modifications
of course.

Density of Oy in N

p?q7r
The idea is the same as above.

Observe that the definition implies that there exist integers n and m such

that y
) r €
sjr T -
Y llhg,) <5
j¢{—n,...,0..m}
And as before, this gives us the result that O,; is dense in N*

p?q?r.

Another idea to prove the density of €™ in N . arises from the usual
mollification:

We have to show that for any given £ and any given function f € N; . there
exists a function g € C'*° such that

||f - g‘N]f,q,rH S €.

As indicated above, our candidate for g will be a function of the form

g=ps* [

where s is a mollifying sequence ( and § will be specified later on).

First of all, observe that due to Tonelli-Fubini we have @5 * f7 = (s * f)7.
Now, as above we observe that the fact that f belongs to N, implies that
there exists Ny € N such that

o0 1
p=

(> 2mnpar) <z

No+1
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which together with lemma 98 immediately leads to the observation that

(21— Frriaar) <2

No+1

For the remaining contributions we first of all observe that

7= 17 % 5| <NVl < ClIFING 4011270,

7q7r |

In order to see this, note that f7 € N, ,1 which together with propositions
93 and 94 and theorem 97 implies that

IV oo < CIFING g0 1127

In the case j = 0 observe that

(0u,f)° = «7'—_1(i§i]f¢o)
= FH(i&fdo(do + ¢1))
= [0 FH(i&(¢o + ¢1))
which implies that
10, fO1ME]] < C[ £ M2]].

Apart from this observation, the argument is the same as the usual one known
in the framework of Lebesgue spaces.
Now, we can calculate for any radius R € (0, 1] and for any point zy € R”

1
n_n

Ry~ a||f7 — 7 % sl pa(Bp@o)y = R? (/ 1f7 = f *Wfq)q
BR(Z‘())

1

< CRITI(|Vp L R)”

< CRVE(|IfIN, 120 R
= CRH||fIN,, 152

< COlIfING,, 162

from which we conclude that

(D217 = s MEIT) T < 3 IIING 620
=0 =0
< (No+ DIIFING,,fla2or o
<

DN ™
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if we choose ¢ sufficiently small.

This shows that f € N, . can be approximated by compactly supported
smooth function - the convolution f * ¢s * f has compact support.

Now, we assume that f € B/S\/tg’,r where s > 0,1 <¢<2and 1 <¢g<p<
has compact support. First of all, we observe that according to lemma 1
J € ME and since it has compact support, f € L. From this we deduce
that whenever O < j < Ny, f/ € B;,, for all s € R and arbitrary m and in
particular, f7 € LP. So for each j there exists a d; such that

I = el < (5 m)

If we now choose ¢ small enough, then

N() 1

No 1

o . . A\ - . r\ 7 £
(2 = Feaslgll)" = (S 2IIF = Foreslagll’)” < 5.
j=0 Jj=0

The other frequencies are estimated as above.

Finally we observe that f x (s is not only smooth but also compactly sup-
ported since it is a convolution of a compactly supported function with a
compactly supported distribution.

O

Remark 7. A close look at the proof we just gave, shows that in fact
ﬂmzocm
is dense in the above spaces.

Last, but not least we would like to mention a stability result which we will
apply later on.

Lemma 8. Let g € By, and f € Bjyp, N L®. Then

19518y oIl < CllglBiag o (11 [Big ol + [ £loc).

i.e. Bl o is stable under multiplication with a function in Bjgy o N L.

Proof of lemma 8:
We split the product fg into the three paraproducts m(f,g), m(f,g) and
m3(f, g) and analyse each of them independently.
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i) We start with 71 (f,9) = > 1, Zf;OQ f'g*. Tt is easy to see that a simple
adaptation of lemma 3.15 of [32] to our variant of Besov-Morrey, implies
that it suffices to show that

[e's) k—2 1
(D119 FBug)” < Cllgl B ol l(1f1Biag oll + 11£1]00):
=0

k=2

In fact, we calculate

0 k—2 1 00 s 1
2 2
(13 F1Be)” < (D lokunl 3 £y
k=2 1=0 k=2 ® =0
o0 S 1
2
< (Dl 1Baglsup > F11)
k=2 =0
S (e 9] 1
2
< lsup D0 Fllle(Y o lres)
S 1=0 k=2
S
< Jlsup S Fllellgl Byl

S =0

< Ifllsollgl Biag 2]
because of lemma 4.4.2 of [43]

< 00.

ii) Next, we study ma(f,9) =D 1oy Zfiklfl f'g*. For our further calcula-
tions we fix [ = k. We will see that what follows will not depend on
this choice, so

||7T2(f=9)|39\/13,2||§0 sup ||ka+sgk|3?vlg,2||-
se{-1.01} 155

In fact, we will show a bit more, namely m(f, g) € B/I\/(% g Again a
1
simple adaptation of lemma 3.16 of [32] shows that we only have to

estimate ) .- 2k||fkgk||M%. In fact, we have
1

ZQkakngMl% < O 25 g llgF g
k=0 k=0

[e'e) 1 oo 1
2 2
< (D0 2M9M By )" (D 17411y )
k=0 k=0
< NlglBhagall 1171B%g ol

< 0o0.
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Once we have this, it implies together with theorem 97 - adapted to our
variant of Besov-Morrey spaces - and the fact that [ C [? immediately
0ok k 0 0
that >~ f*g" € By, And finally we get that m2(f, g) € By »-
iii) The remaining addend is 73(f, g) = m1 (g, f). Again, asin i) it is enough
1

to show that we can estimate (2?22 || £ 22;20 gk||3\4g> ® in the desired

manner. In fact we observe that the following inequalities hold:

9] -2 1 [eS) -2
(DM Be)™ < I Y ol
k=0 k=0

=2 1=2

00 -2

S 1D 68Nl

1=2 k=0
00 -2

= D 227D 9 e
=2 k=0

[e.9]

00 1 -2 1
2 _ 2
(D220 B )" (2o 2720y o112
=0 k=0

=0 l

IN

IA

l

(S 2N B) (AR
k=0

=0 1=0

[ l 1
_ 2
ClIf1Bhug ol (327211 6" I1%)
=0 k=0

C‘|f‘B/1\Ag,2H Hg\B;ObH
according to lemma 4.4.2 of [43]

C||f|B/1\4;2|| ||9|N3,2,2H
due to theorem 97

< Cllf|IBugall 1l91Bgg 2|l
< 0OQ.

IN

VAN

IN

IN

If we put together all our results from i) to iii) we see that we have the
estimate

||9f|B9\Ag,2|| < C||9|B9\4§2||(||f|3/1\432|| +11f]]oe)

as claimed.



Chapter 2

Two auxiliary lemmas for
Morrey spaces

In this chapter we want to present some "stability results” which are similar
to lemma 8. More precisely, we will prove the following assertion

Lemma 9. Assume that h € Wzbg where 1 < g <p<oo,p<n and % >q.
Moreover, let f € My. Then
hf e M.
Proof of lemma 9:
First of all, we state that due to theorem 96 we have that

bs n
h € M, C L° where s = d

n—p
Then by Holder’s inequality it is easy to see that
1 1 1 1 1
hfeMé’Where—:——i——and—:i—i——.
a s 4 b ps n

Finally, we have to show that M} C MP. This holds if
1 < ¢ <min{a,p} <max{a,p} <b< 0.
Observe

i) According to our hypothesis, we have 1 < ¢ and ¢ < p.

ii) In order to see that ¢ < a,note that (use the information on the expo-
nents we have!)

1 1 P 1 4p
g<a e -——->06e L_—>06 L>g
q a ng 4 n

where again the last condition is satisfied thanks to our assumptions.

13



CHAPTER 2. TWO AUXILIARY LEMMAS FOR MORREY SPACES 14

iii) Moreover, we calculate

And similarly, we can verify that b > a.

These facts ensure that all the necessary requirements are fulfilled. This
completes the proof of the lemma.

OJ

Lemma 10. Assume that h € W]%/[p where 1 < ¢ < p < o0, p < g and
q
% > q. Moreover, let f € M3 . Then

hf € My.

The proof of this lemma is mutatis mutandis the same as the proof of lemma
9.



Part 11

A generalisation of Wente’s
result

15



16

In this part we will study the following problem: Look at
—Au = —(Z—b — —b—(l = Jm’((l, b) (1)

and assume that the right hand side of the above equation belongs to some
Besov-, Triebel-Lizorkin- or Besov-Morrey space. What can we say about
the properties of u?

Our aim is to present a generalisation - stated above in the introduction as
Theorem B - of the famous result of Wente, Tartar and Coifman-Lions-Meyer-
Semmes (see [66], [56] and [16] for instance). For the sake of completeness,
let us recall this result (B?(0) denotes the two-dimensional unit disc)

Theorem 11. ([66],[16], [56]) Let a and b be two function in W2(B%(0),R).

Moreover, let ¢ be the unique solution of

—~A¢ =Va-V+b=0,a0,b— 9,a0,b in B¥0)
© =0 on OB%(0),

Then the following estimates hold
16]lc + IV ol21 + V26l < C[[Vall2|| VD]
Note that the above equation is scalar!

So if we start with slightly modified spaces in which a and b shall lie, we still
have continuity of solutions to (1). More precisely we have

Theorem 12. Assume that

0 1
(S lhaeimzle) <oow =z
s=0

and
o0 1
S n 2
(S IBM3IP)° < o0y =2z,
s=0
as well as
oo 1
(D lla|Mmz)) " < o0
s=0
and

(S Irmp) <oc.
s=0

Then any solution of

—Au = Jij((l, b)

where as above i,7, € {1,...,n} is continuous.
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Remark 13. Note that the hypothesis of the preceding result can be refor-

mulated as follows: )
We assume that <Z§io ||a§|M2"||2> * < o0, Le. that

(3 llwlag)’
s=0

00 1
— Z( sup suprn_2 as|L2(B($0,7’))||)2>2
s=0

zo€ER™ 0<r

< Q.

But this last requirement is equivalent to the following

00 1

(Z( sup suprQ"/ \a5\2)2> * < 0.

' To€R™ 0<r Bl(zo,r)
As in the above cited two-dimensional case, we are also able to give estimates
for the first and second derivatives: Similar to the situation we had in theorem
11, we will assume in addition that the supports of a,,a,,b, and b, are
contained in the n-dimensional unit ball B™. Moreover, assume that n > 3.
We start with the following estimates for the gradient of wu.

Proposition 14. Assume that a,, a,, b, and b, are distributions whose sup-
port is contained in B™ and belong to BJOMW, n > 3. Moreover, let u be a
solution (in the sense of distributions ) of

—Au = azb, — ba,.
Then we it holds
Vu € B?vtg;
and
3
In particular, Vu € L*7¢ for all e > 0.
Lemma 15. Assume that a,,a,,b, and b, are distributions whose support
in B™ and belong to 39\432' Moreover, let u be a solution ( in the sense of

distributions ) of

—Au = azb, — ba,.
Then it holds

V?u € Bjyy, C B

Before we will come to the proofs of these results, let us discuss a duality
result on which the here presented statements heavily rely.



Chapter 1

Duality result

Here, we want to present a description of predual spaces of particular Besov-
Morrey spaces which we shall encounter later again.

Proposition 16. The dual space of b°

: 0
LU (H ) 00 18 the space BM%

Remark 17. The above result has the same flavour as (see for instance
[43])
(bgo,oo>* - B?,l

Proof of proposition 16:
We have to show the two inclusion relations.

0 0o .
We start with (b L(H2?) 0 )* D BM2 X

Assume that f € B?Vl C N 11 C S’ and assume that 1) € b°
1 7

density we may assume that w € S. We have to show that f € (b L () oo)*.
To this end let Y, @k * 1y, be a representation of ¢ with

Ll(H" 2) . By

SupﬂwkHLl ) < QHwal HZ %00 I-

Note that in our case - as a tempered distribution - f acts on ¢ and we
estimate

f()] = |f(z Pr * )|

= (X F @Fw)]
= \kfgf(fl@okfwk)\ \kfj [ 17 )|

18
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and further

F@) = \iwkmmlf)( = ]i [oa

where df = F(orF ' f) d\ with X the Lebesgue measure

Z [k F (o F )]

IN

IN

sup!lwkHLl -2 Z\If o F ) 3

k=o
recall proposition 103

= SulOIIWHL1 - ZHf (e F I v
k=o
cf. also remark 105

C’sup||¢k||L1 H2) ZH]: SOkff)H

k=0
|

Ol syl 1B 5

IN

IN

< o0

thanks to our assumptions.
Now we show the other inclusion, (b° ) C B .

LY (H ) 00 ME L
We start with f € (B° LU (HE) 00 )* and we have to show that f belongs also to

B?\/t% First of all, note that f gives also rise to elements of (L'(H™ 2))* as
1

follows: Each ¢ € bL1 H 2)

and of course ¢y, * wk € bL1 (HE) 00 Vk € N. Moreover, for each k € N we

can be seen as a sequence {¢ } -, C L*(HZ%?),

have - again by density of S -

f((;kj(@j * ¢]>> = <[> bO Ly(HYS 2),00)*’b2,1(Hgo_2),oo
= LR, e
= <f,§0k*¢]g>$’,
= < [LF HenFih) >s15
= <F(euF ') by >s0.

—1

= < f(ﬁokf f),lbk >M%,L1(H§‘o—2) :

Next we will construct a special element of b

Let 0 < ¢ small.
We choose 1, such that

(H" 2)

Hn 2)
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e Y, € §: Remember that we have density!

o |[Ynllpr g2y <1

o 0< < F(opF1f), 0y ZME L ()

< F(SOkfilf)awk >M%,L1(H§o*2) 2 H_’F(QOk_’FflfM'M% — 5271C
= Hf(gokfilf.M'(Ll(Hgo—Q))* — 6271C
= sup | < FlopF ' f)u> | —e27",

ueL'(HL )

HUHLI(H&*Q)SI

Note that like that ¢ = >"77 @ * 1y, € B with

LY (HY 2),00
Hw‘bLl HY %) H <1l

If we put now all this together we find - recall that f acts linearly! -

> s = § [V A Gl
M M
k=0

= CZHT'(%FV)HM?
k=0
2¢ + f(1)

Y as constructed above

< 26+||f|( L), )||

IN

IN

Since this holds for all 0 < ¢ we let € tend to zero and get the desired
inclusion.
All together we established the duality result we claimed above.



Chapter 2

Proof of the generalisation of
Wente’s result

2.1 Proof of theorem 12:

The proof we present here, is in close analogy to an alternative proof of the
original Wente result in dimension two. This alternative approach is pre-
sented in Appendix B.1 and to emphasise the parallels, we sometimes refer
to corresponding steps there.

The proof of this assertion is split into several parts: In a first step we show
that m (az,by), m3(az,by), ms(ay,b,) and m(ay,b,) € B;jl and

SRt alby — albs € B2 (The reader who is not familiar with
paraproducts can find the necessary definitions and details in Appendix B1.)
Once we have this we show in a second step that under this hypothesis the

solution w of
—Au = f wheref € Bo_<>2,1

1S continuous.
. k—2
Analysis of mi(az,by) = >0, >y abby:

We will show that m(ag, by) € By
Our hypotheses together with theorem 97 ensures us that a,, b, € B
Next, due to proposition 123 it is enough to prove that

-1
00,2°
127 ¢4 [I(L%)]| < o0

o NTOR2 ot
where ¢; 1= ) ,_ 5 a,bl.

21
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We actually have
o0 )
1277 = > 2% dbb I

j=0 t=0
00 Jj—2

< D271 alllellb oo
j=0 t=0
00 7j—2

= D> 27D a2 (B
j=0 t=0

00 Jj—2 1 00 1
< (X2 alR) (2 ime)
=0 t=0 j=0
due to Holder’s inequality
j—2
= 11277 ) all 1P|, | BL]
t=0
' J
< Cl271 ) al 1P(L)]]]1by B
t=0
< Cllas| BXolllby B
because of lemma 126
<

thanks to our hypothesis.

This shows that in fact 7 (as,b,) € B’y. Similarly one proves that also
m(ay, by), m3(as, by) and m(ay, b,) belong to the same space.

In remains to analyse the contribution where the frequencies are comparable.
This is our next goal.

. +1 .
Analysis of 32> /1 alby — albs:
In stead of first applying the embedding result of Kozono/Yamazaki which
embeds Morrey-Besov spaces into Besov spaces and then analysing a certain
quantity, we invert the order of these steps in order to estimate

1

Zzio :_:stl aibi - aibi-
In comparison with the proof of proposition (117) we will not test the above
expression with a element from its dual space, but we will use the result
concerning predual spaces of Morrey spaces, proposition 16.
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Next, there will follow some technical lemmas:
Now, lemma 129 has the following counterpart in this modified context. Re-

call that S is dense in bL1 (HE2) 00

Lemma 18. Let ¢ € ®(R"™) and assume that v € S N L*(H?) with repre-
sentation {Wr g, B.€. Y peo @k * U = U, such that

SuprkHL1 HZ™?) < 2|W’bL1 HY 2)oo||

Then

d ., .
N Hﬁ_wk i W)’ LU(HZ?)
< Or ||¢k||L1(H” 2y < C2s||¢|b

Ha ‘P’“*w’“’

LY(H%2)
LY (HY ) H

Proof of lemma 18:
For the proof of this lemma, we need the a corollary of Adams, see below (cf.

[1]).
It holds

.
< A ol Onl sy

c swp {/|—¢k\*wk| du}

,ue/\/l2
(1] Mmest

= ¢ s { [ Izl - o) e |

2
u€M+<
Il <1

= ¢ s { [1000) [ I5mele -0 ddao |

peM?Z
<
llull 5 <1

o

(PR

Ll Hn 2)

IN

by Tonelli’s theorem

= ¢ s {1l [ 15-ad0- o) duonm |

pem’?
llull <1

note that @ can be chose radial which together

with theorem 52 asserts that ¢y is radial

and %@k too
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and we continue

H%@k*%‘

< ¢ sy { g ol -0« ) i)

7
HEMF
Il 5 <1

¢ {fman)

u€M7
llell | 3 <1

LY(HZ?)

0
where v := — @A *
Ox

IN

J .
¢ s {lnlls Igeud <l |

ue/\/l7
llull <1

IN

J .
¢ sup {lullsnes g eulles s

;LE/\/I7
llull 5 <1

by lemma 98

IN

9
Cllvwllp ey 15 Prll

< O2*[Ynll a2y
as in the case of proposition 117
S C12]€||¢|bLl HY 2 ||

what we had to prove.

Corollary 19. ([1]) If f(x) > 0 is lower semi-continuous on R™, then

HfHLl(HgO)Z/degowsup{/fdu\ueM" ¢ andH,uH <1}

Next, recall that the idea which lead to lemma 132 was independent on any
norm! So it is easy to see that the corresponding result holds also here.

Now, we can start with the estimate of S°°° S™*! alby — ayb;. Our goal

is to show that >°° S™5* 0 albs — albs belongs to BO 3, Making use of
the above duality result, see proposition 16, we will ﬁrst show that
s+1
t1s tys 0
Z a,b, —a,b; € BM?,l Vs € N

t=s—1
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then we establish

s+1
ZH S atby—alpi|B° 4 | < oo
M12,1
s=0 t=s—1
This ensures that
oo s+1
> alby—alpieB® , C NI
Yy yYz Mf 5,11
s=0 t=s—1 )1

First of all, let us fix t = s + j where j € {—1,0,1}.
In order to show that a’, by — tbs = B0 it suffices to show that for all
2

e’ with [|¢]b° || < 1 the following inequality holds

LY(H% 2),00 LY(HX?)

- Y d(alby —agby) = - W(agby — agby) dX < oo

where as before \ denotes the Lebesgue measure.
Moreover, in the subsequent calculations we assume that for ¢ we have a

representation {¢y}r-,, i.e. Do Pk * ¢y = 1), such that

sup 1L a2y < 20 gyl < 2

and again, recall that we have density of S in 0° L (HZ) 00

In this case we have

t1s t1s o g tps) 2 t1s
- @Z)(a:cby - ayb:c) = - wax (a by) way (a bw)
9 . s+3 .
= /n [%(a by)(;}" (wkfwk)>

9 s+3
oy @) (L7 )

because of the same reason as in lemma 132
s+3

= /n[ a'by — (Zf @kfwk))

s+3

talbt = (Z}" (erFu) ) |

by a snnple mtegratlon by parts.
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And furthermore

5+3 B
vt - = [ [t (X g

=0 ¥
iy
+a b:c( 2 a—y% * W)]
543
= /n [—atbza—%*%

s+3 o
S (11aby I ME] 15 n el L (HE )|

k=0

s o 0 < n—
HIaBIME 15 e x vl L (HE))

IN

by proposition 103
s+3

sz 12 n
= 7 (1B ME N I+ w2 (HE )
k=0
b ME | 5 sokwk\L%H" o)
s+3 P
< > (Ilalmz 1 iny Mz n—a;@k el L ()|
k=0

Hla' |MEIIEIMS 5 wk*¢k|L (Hio 2)II)

because of Hélder’s mequality with Morrey norms

see also remark below

s+3
< D (Il 105 MBI 251010 s
k=0
M 1B M 241010 ey
according to lemma 18
< C2||a’| My 1oy M3 + C2 0! M| (1531 M3]
< o0

due to our assumptions.
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Thus we have seen that for all s € N

ti1s tis 0 * 0 0
Clxby —aybl, (b Hn 2) Oo) = BMI%J C N%,ll
Next, we study
s+1
ZH Z a, bs a, bS n
71
s=0 t=s—1 1o

What concerns this latter quantity, we will assume for the sake of simplicity
that ¢ = s. Then we can estimate

Zua b= abil By | = oty = aybelBY g 1+ llaib) — aipilB) g |l
< Ol lMz] Hb?,IMS‘II + C[a® Mz [ M3|
+C Y 2°[[a®| M| ||b; | M5]]
s=1
+C Y 2%t |ME || | |b3 M3
s=1
< Ol M| [[B)|M3]| + Clla® | M| [ M3
+C Y [laz M| [[by M5
s=1
+C > [lag| M| [l M3 |
simils;r1 to lemma 39
cf. also theorem 2.9 in [29]
< C|a®| M| [[B)IMEI| + Clla| M| [[62] M|
0 1 oo 1
+C( D llazmsl2)* (3 lwglmzl )
s=1 s=1
00 1, 00 1
+C( D llaglnmgl )" (3 Nslmzl )
by H'o:glfiier’s inequality -
< o

thanks to our hypothesis.
All together we have seen that

o0
S1.8 S1.8 0 0
E a’bl —a’b? € B n» C Naq,.
T T > 5,1,1
4 Y M2 1 2

s=0
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Now, since the above estimate is independent of the choice of j we immedi-
ately conclude that

co s+1

ZZabs—abseanl

s=0 t=s—1

Now, as we know that Y22 S albs — albs € B0 C Nn 1.1 we apply

the embedding result of Kozono/Yamazaki, theorem 97 and ﬁnd that

co s+1

Z Z albs — albl € B2

s=0 t=s—1

Remark 20. Assume that f,g € M75. Then we have for all 0 < r and for
all z € R”

< N fllz2Br@llgllez s, @)
S 017’%_1027“%_1
= COr"

1 fallzr (B, ()

According to the definition, this shows that fg € Mf )

Conclusion

Finally, by the same arguments as in the proof of proposition 38 we conclude
that any solution of
—Au=f

where f € BO_O?1 is bounded continuous since due to Sickel/Triebel [47] we
know

B, cC.
0

Corollary 21. A careful look at the proof of theorem 12 and at the proof
of theorem 116 reveals that the assertion of theorem 12 holds also under the
hypothesis

g €ENpoy o T =22

and
0 —
be € Ny oy s &= 2,2
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Remark 22. Note that in the result above, we just give a sufficient condi-
tion. If one wants to study necessary conditions in order to obtain continuity
of solutions to (1), one might start by studying limit cases for embeddings of
Besov ( and respectively Triebel-Lizorkin ) spaces into C, the space of con-
tinuous and bounded functions, probably by working on bounded domains
instead of the whole space R".

The choice of Besov-Morrey spaces was motivated by the work of Riviere and
Struwe (see [42]).

Now, if one compares the above results with theorem 11 one realises that so
far, we didn’t say anything about the derivatives of a solution u of

—Au = azb, — ba,.

2.2 Proof of proposition 14:

We will prove the two estimates separately:
i) In a first step we show that a,b, — a,b, € Bﬁg,f
From the proof of theorem 12 we know that

oo k41

k=0 s=k—1
Next, we observe that

-2

[7s(ar, b)| Bk Il < 022 ol

by a Slmple modlﬁcatlon of lemma 3.16 in [32]

] s—2
< O 27lag| || Db
5=0 k=0
%) % oo s—2 9 %
< o(Xlaslle) (2] )
5=0 5=0 k=0
oo »y S 2 %
< CHaI\BRAg,QH(Zz? > H)
k=0
< Cllas| Bl oll 11by| Bty ol
according to lemma 4.4.2 of [43]
<

H@x’BRAQ,QH Hby‘B?\Ag,zH'
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Now, since
Opu = FL (z fgf(Au))
€
we note first, that due to the facts that Au € F{, C L' and 7~ € L1
for n > 3,

(Vu) € L" € M

which implies that (Vu)? € Bfy .
Second, for s > 1 we have

[(Vu)’llavg < C27°[(Au)*||ag

which leads to the conclusion - remember the first step! - that
2821(Vu)5 S B?\/tg,r

Alternatively one could observe that

0"l (1g) = Cler

information, which together with theorem 2.9 in [29] leads to the same
conclusion as above, namely that

Vu € B?\Ag,l'

ii) On the other hand theorem 116 and the proof of theorem 12 imply that
agby — ayb, € B2 N FY,
from which we deduce - similarly to the proof of proposition 38 - that
Vu € B4 N F,.

Now, interpolation by the complex method (see e.g. proposition 2.5.2
in [43]) between the two spaces B!, and F!, leads to the conclusion
that

Vu € BS,; C L*

These estimates complete the proof.



CHAPTER 2. PROOF OF THE GENERALISATION OF WENTE’S RESULT31

2.3 Proof of lemma 15:

This proof is very similar to the one of proposition 14.
In stead of the observation 8‘“'( & ) < C|¢|7*1ol here we use theorem 2.9

€12
of [29] together with the fact that

ol (35) < et



Part 111

Gauge and regularity results

for problems of the form
—Au =) - Vu with ()
antisymmetric
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As an application of what we did so far, we would like to present a general-
isation (cf. theorem C and corollary D in the introduction) of the following
regularity result of Riviere (see [38])

Theorem 23. (/38]) Let m € N. For every Q = (Q})1<; j<m in L*(B}(0), so(m)®
A'R?) every weak solution u of

—Au=Q-Vu
1S continuous.

Note that L*(B}(0), so(m) ® A'R?) means that ¥V 7,5 € {1,...,m}, Q) €
L*(B}(0), A'R?) and Qi = —QJ. Moreover, the above equation has to be

understood in the following sense: For all indexes i € {1,...,m} we have
—Aut =", Q- VI

As a possible generalisation we have

Theorem 24. Let the dimension n satisfy n > 3. For every m € N there
exists a constant e(m) > 0 such that for every §2 € 3%372(3”, so(m)® A'R™)
with

19| Bl oll < e(m)

any distributional solution of
—Au=Q-Vu

which satisfies in addition
Vu € By o
2

1S continuous.

This result crucially relies on the following gauge result.

Theorem 25. Let n > 3. There exist constants e(m) > 0 and C(m) > 0
such that for every Q) € 3%372(3", so(m) @ A'R™) which satisfies

121Bly ol < (m)

there exist A € L>(B", Glm(R))ﬂB}V@,z and B € B}\Ag,z(Bn7 M,,(R)®A*R")
such that
1)
dg =dA—AQ = —-d*"B=—*xd*x B
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C(M)[[QUBYy ol = IVAIBRyy ol +[[VATH Bl ol

+/Bn ||dist(A,SO(m)>||zo

iii)
IVB| Bl ol < C(m)[|Q Bl ]

Remark 26. Note that our result differs from the generalisation in [42] (see
also [44] for a modification of the proof of Riviere and Struwe) in so far, as
on one hand we do not impose any smallness of the norm of the gradient
of a solution and really construct A and B (see theorem 25 and not only
construct Q and & such that P~'dP + P~'QP = xd¢, but on the other hand
work in a slightly smaller space.
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Proof of theorem 24

Assume theorem 25 to be true and let A and B be as there.

Then we have
«d * (Adu) = —d*B - Vu
d(Adu) = dA A du.

These equations together with a classical Hodge decomposition for Adu
Adu = d*E + dD withE, D € W2
lead to the following equations

AD = —d*B-Vu
AE = dA A du.

Since the right hand sides are made of Jacobeans we conclude that D, E €
BY, ;. Next, we observe that

du=A"Yd'E +dD) € BYy, € B

This holds because A~ € B/l\/tg,z N L> (see also theorem 25) and dD,d*E €
B?\/tgg (see also proposition 14).The proof of the above fact is the same as
the proof of the assertion of lemma 8. In a last step we note that (recall the
reasons why proposition 38, theorem 12 and proposition 14 hold) thanks to
the information we have so far

ueBY,CcC

which completes the proof.
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Proof of theorem 25

Lemma 27. There exist constants ¢(m) > 0 and C(m) > 0 such that for
every ) € B?MS’Q(B", so(m) @ A'R™) which satisfies

||Q|BR43,2|‘ < e(m)

there exist { € Bl o(B", s0(m)@A" *R") and P € Bl o(B", SO(m)) such
that

i)
xdé = P~'dP + P7'QP in B"
i)
¢§=0o0noB"
iii)

1618 g ol + 1P| B ol < C(m)[[QBRey ol

The proof of this lemma is a straightforward adaptation of the corresponding
assertion in [42].

Now, let e(m), P and £ be as in lemma 27. Note that since P € SO(m) we
have also P~ € B}, ,. Our goal is to find A and B such that

dA — AQ = —d"B. (2.1)
If we set A := AP then, according to equation (2.1) it has to satisfy

dA+ (d*B)P = A + d¢.

36
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As a intermediate step we will first study the following problem

AA = dA - xd§ — d*B - VP inB"

d(d*B) =dAANdP' —dx (AdeP~Y) — d « (dEP7Y)
g—‘é, =0and B=0onoB"

[ A =id

For this system we have the a-priori-estimates (recall theorem 12, proposition
14 with its proof, lemma 8 and the fact that we are working on a bounded
domain)

1AIBhgoll + 1 Alle < ClIEIBAy ol I[AIBigg ol
_'_CHP’B}\AQ,QH HB‘B}V{ng

and

BByl < ClIP! Bl ol 1AIBigy oll + ClIEIBrgg ol 1Al
+C|[¢|B* M, 2]].

Since the used norms of ¢ and P - as well as of P~! - can be bounded in
terms of C ||Q|B9\432|| the above estimates together with standard fix point

theory guarantee the existence of A and B such that they solve the above
system and in addition satisfy

AIBlyg ol + 1Al + | BBl oll < CIQIBS ol (22)
Next, similar to the proof of theorem 24 we decompose for some D
dA — Axd¢ +d*BP = d*D.
Then we set A := A + 1d, which satisfies for some n — 2-form F
dA — Axd¢ +d*BP = d*D — xd¢ =: *dF.

It is not difficult to show that *d(xdFP~1) = 0 together with F' = 0 on 9B"
imply that F' = 0 (see also a similar assertion in [38] and remember that on
bounded domains Bj , C L?).

From this we conclude that in fact A satisfies the desired equation. If wet
finally set A := AP~! and let B as given in the above system we get that in
fact these A and B solve the required relation (2.1).

So far, we have proved parts ii) and iii) of theorem 25 (recall also estimate

(2.2)).
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Moreover, the invertibility of A follows immediately from its construction,

likewise the estimates for VA and V{lfl.
Last but not least, the relation A = AP~! + idP~! implies that

|14 = SO(m)||w < Cl|Alloe < ClI92|BRgg oll-

This completes the proof of theorem 25.



Part 1V

Gauge results for —Au = -u
with () antisymmetric
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The goal of this part is to apply an idea which is somehow similar to the one
arising in the preceding part where we used an appropriate gauge transfor-
mation in order to rewrite the equation we want to study in divergence form
- as a conservation law - which enabled us to make a more refined regularity
analysis.

Our problem here is the following one:

—Au = Qu (3)

where 2 is antisymmetric.

Announced as theorem F in the introduction, we will prove

Theorem 28. Let n > 4 and let m € N*.
Then there exists a constant € > 0 but small enough such that in a neigh-
bourhood of the origin, there exists a map

%(3”780("1)) [e%s) n n
S: M, —  L*®(B )ﬂWj@% (B", Gl (R))
Q — A
with the following properties

1)

AA+AQ =0
i)
|Al|pegny = sup  |A(z)X]| <1
zeBn Xesm!

iii) A is invertible almost everywhere and A~' € M?(B"™ where % >a

iv) there exists a constant C' > 0 such that

A7V Allssgm + IV Al oy < ClIRIL 3
2

3
My

provided that HQHM%(Bn <e.
2

In what follows, all norm are taken on B™ unless other domains are indicated.

Notation: Similarly to the classical Sobolev spaces W#? of distributions
such that their derivatives up to order k belong to L”, we denote by WK/IP
q

those distributions which satisfy the requirement that their derivatives up

to order k are in MP. In addition, a distribution u belongs to W | () if
»Vlg

u € WJ’\}[? (Q) and u is zero on the boundary 0f2 (in the sense of distributions).
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An intermediate transformation

Similar to the intermediate construction of £ and P (see lemma 27) in the
context of our gauge result for problems of the form

—Au=Q-Vu
also in our new situation where we study prob;ems of the form
—Au = Qu

the construction of the gauge is splitted into two steps.
In a first step, presented in this chapter, we will show the existence of
P e W;ﬁ (B™,SO(m)) with the property that in the sense of tempered

distributig)ns it holds
1
§[APP‘1 — PAP '+ PQP™' =0

with P = id on the boundary dB", again in the sense of tempered distribu-
tions. More precisely, we will prove the following lemma:

Lemma 29. Let n > 4 and let m € N*. Then there exist ¢g > 0 and C > 0
such that for every Q € My (B™, so(m)) satisfying

HQHMQ%(Bn) < g
)

there exists P € W;ﬁ(B”, SO(m)) such that

s[APP~! — PAP™']+ PQP~' = 0 in D'(B") (1.1)
P = id in D'(0B") |

Moreover, it holds

1P —id|W?

0,M,2 (B"

<9,

5 (1.2)

41
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1.1 Proof of lemma 29
We set
n n 4p
Urr = {Q e M?(B", so(m)) , |2 < e} wheren >p > 50 > qand g > 2.

Claim:
There exist g and C' > 0 such that

o Q € UZP such that 3P = exp(U) satisfying (1.1) and (1.2)
Vae =9 and ||P —id||y= < C||Q| e
O,MZ]” q

is open as well as closed in UZP with respect to the M}-norm.
Thus - due to the fact that obviously UZP is connected - we find that we have
Ui = vee.

This claim immediately implies the assertion of lemma 29:
Let g9 be given by the claim above and let ) satisfy

1], 5 < eo.

Once we are given such an {2 a simple mollification procedure yields a se-

quence {Qx} C ULP which converges strongly to  in M.
Now, let P, be the matrix associated to €2, via the preceding claim. In
particular, we have for all radii R

1P —idllw22myy < |[Pe —id|fy2 %R%_2

My

<C I, 5 R5
< C’||Q||M2%R%_2

< C€0R%72
uniformly in £! (1.3)

In particular, the sequence P, — id is uniformly bounded in W22,
Thus, there exists a subsequence which converges weakly in W22 to a limit
P € W22, This implies also that

AP, — AP in L%

This together with the fact that weak limits are unique and the uniform
bounds for given radii, allows us to deduce that the limit P belongs in fact
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to Wj/[ﬁ and the following estimate holds
2
1P = idlys | < CIIOA s

M2
Moreover, from the embedding result, theorem 95, we know that
W;@% — M for all p < 00, p > q.
A direct adaptation of the classical result about compact embeddings (see
e.g. [12], p.169) shows that also the above embeddings are compact. All
the information we thus have at hand, allow us to pass to the limit in equa-

tion (1.1) and we have shown that P satisfies the required equation (in the
distributional sense).

O

Proof of the claim:
In the proof of the claim, we will need the following two lemmas which will
be proved in the next two sections.

Lemma 30. Let n > 4 and let m € N*. Then there exist ¢ and C such
that for any P € VV2 5 (B",S0(m)) which satisfy

P =id ondB" and ||P —id|ly> () < €1

2
0 ]W2

it holds
|P —id|lw> gy < Ch||P'AP — APT'P|| 4

o1v17

Moreover, if P € Wi[g(B”, SO(m)) with P =id on OB™ with

M7 (B")’

[P —id||w2 (Bn) S €1

OM2

1t holds
HP—Zdez r (B < Ch||P~ AP — AP~ PHMp(Bn)

And for the map
F . W&Mg(B”, so(m)) — MPF(B",so(m))

V o (Pyexp(V)) 'A(Pyexp(V))
—A(Pyexp(V)) ' Pyexp(V)

where Py € W]%/jg(B", so(m)) we have
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Lemma 31. There exists €5 > 0 such that for any Uy € W2, »,(B", so(m))
» Vg
which satisfies

|exp(Uy) — idllwz,, < 22
we have that dFOPOZeXp(UO) is invertible from W&Mg(B", so(m)) to ME(B", so(m)).
Now, back to the proof of the claim. First we will show
Closedness of VI¢, in ULP:

This assertion is shown by exactly the same arguments as we used in order

to prove that the claim implies lemma 29. Note that in fact closedness holds
for all g > 0 and for all C' > 0.

Openness of VI¢, in ULP:
We will show that there exist £g and C' > 0 such that openness holds.
Let Py € W]@g(Bn, so(m)) be given and look at the following map
Fho W&Mg(B”,so(m)) —  MP(B", s0o(m))
V o (Pyexp(V)) 'A(Pyexp(V))
~A(Pyexp(V)) ' Pyexp(V).
Now, observe that

i) Due to the fact that Wﬁg — (', cf. theorem 95, the map

V = exp(V)

is a smooth map from W&Mg(B", so(m)) to Wz@g (B"(SO(m)).

ii) Obviously, the Laplace operator is a smooth, linear map from Wfﬂ to
M. '
q
iii) Recall that the map
(A,B) — AB
is also smooth (remember that W3, — C).

These observation allow us to conclude that the map F° is C'. And thus
it makes sense to look at its differential, and at the origin we calculate for
§ € Wiyp(B", s0(m))

P
My

%dFOPO ’ g = LPO : g = A€ + [PO_lv-POv v&] + [QOa g]
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where 20 := Py 'APy— AP, ' Py and [+, -] denotes the standard commutator.
Once we have the invertibility of dF'f at the origin, which actually holds true
thanks to lemma 31, we can complete the proof of the openness of Vf,’g in
ULP as follows:

Assume that g is smaller than ¢; from lemma 30 and smaller than ¢, from
lemma 31 and let C' be equal to C; given in lemma 30. Moreover, assume
that Cey < e5.

We have to show that in a neighbourhood of a given )y € V7 for each (2
there exists a P = exp(U) such that

%[APP‘l — PAP7'+ PP~ =0

and the desired estimates

1P—idlw:, < ClIQIl g
M2 2

1P —idlys < CliQlg

P
M q

hold.
First of all, note that J[APP~' — PAP™']4+ PQP~! = 0 can be rewritten as

20 =AP'P - P'AP.
In addition, observe that
FP(0) = PyPAPy — APy PPy = —20,.

Thanks to lemma 31 we are allowed to apply the local inversion theorem
and thus can prove that in fact, for every 2 which lies in a small enough
neighbourhood of €y there exists a P = exp(U) which solves the desired
equation.

It remains to show the claimed estimates:

They are immediate consequences of the construction of P and lemma 30.
Thus we have proved the desired openness and the proof of lemma 29 is
complete.

O

1.2 Proof of lemma 30

To start with we rewrite

PTIAP = %[P*AP —APTIP]+ %[P*AP +AP'P).
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Note moreover that

P'AP=AP'P = div(P'VP+VP'P)-2VP.VP
—2VP . VP

Now, we estimate

|[P'AP + AP 'P|| »

My

IN

2[[VPlagg [V Pl ary

because of the above calculation
and the fact that P € SO(m)
26, (| VPl My

thanks to our hypothesis.

IN

In addition, observe that

2
IVPllagy < CIIV*Pll, 5 < CIAPI, 3

(remember theorem 96; to see the second inequality, recall the corresponding
assertion in the classical framework of Sobolev spaces, see e.g. [51], and work
non balls of radius R).

If we put together what we know so far, we find

AP, 5 = [IPPTAP], 4

VAN

-1
1Pl P AP g

< ||PTAP|| g
2
since P € SO(m)
1 1
< Z||PT'AP —AP7'P|| o 4 <||[PT'AP + AP7'P|| =
2 My 2 My
1, _ 1
< §||P AP — AP 1P||M2g +§251||VP||MI
1, _ 1
< P 'AP - AP 1PHM§ +Z||APHM2%

provided that ¢; is small enough.

Thus we have
IAP] 5 <

Wl N

|P'AP — AP7'P|| 4
M2
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which finally leads to the first assertion of our lemma.
Next, we have - again due to our above rewriting -

|[PT'AP + APT'Pl[yp < 201V P [[VPllw:,

thanks to lemma 9

201V Pllwy,

IN

according to our assumption

< CngAPHMg

and we can complete the proof of the second assertion exactly in the same
way as for the first assertion.

OJ

1.3 Proof of lemma 31

We have to show that there exists 5 such that if

|| eXP(UO) - id“W? n
MP

< &

then there exists a constant Cy, such that for each w € MP(B", so(m)) there
exists a unique £ € W2, »(B", so(m)) such that it holds
Lbog =w
| |§| |W§ P (B™,s0(m)) < CUO | |w| |M5(B",so(m))'
g

Recall that for £ € WOQMg (B™, so(m))

SAF € = LM €= AL+ [PV R, Ve + [20.8].
Due to the following embeddings
Wip = C(B") — L*(B")
it is immediately clear that

[Q0,&] € MY
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Next, we will look at the commutator [Py 'V Py, VE] = Py 'V P\ VE-VEPy 'V .
We estimate

[Py 'V Po, VE] || asy 2[[VERVE |z

<
< 20|V B[y IVElIwr,

thanks to lemma 9
Cl|P —idl|[w= |

n
0,M72

IA

f||vv2

0,M¥

So if we put together what we know so far, we find that L is a continuous
map from W7, »(B", so(m)) to MP(B", so(m)).
» g
Next, assume for the moment that & € Wfﬁ where
4s 4

1 1
— >tand — + - < —.
n p s n

The second requirement can be fulfilled because of the following reason:
Our hypotheses, p > Z can be rephrased as }D = % — ¢ for some positive 4.

2
Thus, we may set
1 2 9

s n 2
Then it is easily checked that for this choice of s, we have }—17 + % < %.
And we estimate, due to lemma 10

1820, E]llazs < ClI0ll 511l

5 0,M}
and due to lemma 9 and theorem 96

[Py 'V Po, VE]||mg < C| Py — id) |y y 1] w2

o,M§
0,M
Thus, if ||Fy — id||y2 , is small enough, we can conclude that for every

0, 1\/122

w € M(B") there exists a unique solution £ € W, (B") of L™¢ = w.
Once we assume in addition that w is so(m)-valued, it holds
PR+ =0.
because
(Py'VP) = —Py 'V Py and Q) = — (.

But since the solution is unique - what we have shown above - this implies
that & = —¢.
All in all, we have seen that
LPO : WOQ,MtS(Bnu SO(m)) - MtS(Bn7SO(m)>
£ — AL+ [Fy'VP, VE + [Q,¢]
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is an isomorphism.
Note that due to the particular restrictions on s and ¢, we have in particular
t§%<2<qandthus

2 2

Next, observe that for £ € W]%/[ts and {2y € MP one has

1 1 -2 1 1 -2
Opf € MPwith = — + =2 and - = - 4+ = —=°
a q nt b p ns
For such a and b it holds
-2 1 1 4
Q:E—I—n S:n(—+—)—2<n——2:
b p S p S n
and thus - by theorem 95
W]%ib — Loo
So, we have
AT, EDlle < Cll[S0, ENllaz
< C||QO||M§||€||W§’M5

where A~! denotes the inverse Laplacian on B" with zero Dirichlet boundary
condition.
Similarly, one finds

1A (B 'V P, Vel < ClIPo —idllw2 [[€]lo,we

0,M}

These last inequalities implies that in fact the unique solution
€ € WOQ,MtS(B“, so(m)) of LPw = ¢ for given w € MP is bounded with the
following bound

lelloe < C[1+ 1R = iz, | ollasy

Then we have also

112.€Mllag < Cll0llasgl€]lec
ClIAP g [1+11Fo = idllwz |1l sy

p
{‘I

IN

Now, observe that for any ¢ € W ap We have (recall lemma 9)

1P "V Po, V]|l < CllPo —idllwe , [1C]lwe

L
0,02 0, My
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So, if [|Py — id||w=2 . is small enough the map

0, ]W22

HM W&Mg(B”, so(m)) — MPF(B",so(m))
§ — AL+ [P'VR, V¢
is an isomorphism. Furthermore, the same arguments as in the case of L re-
veal also that H'? is an isomorphism from W&Mts (B", so(m)) to M7 (B", so(m)).
Finally, let
¢ = (H™) " (w = [Q0,€])

which leads to the conclusion ¢ = £ because H({ — ¢) = 0 and hence
€€ WgMg(B”, so(m)) with the estimate

l€llwz , < C[1+ [1AP g [1+ 1Py — idllwz 1] llllagg-
g g
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Some useful estimates

In this chapter we would like to present some supplementary estimates which

will turn out to be useful in the proof of theorem 28, in particular in lemma
34.

More precisely, we have

Lemma 32. Let a and b satisfy %b >a>1, b < oo where the dimension n
satisfies n > 4.

Then there exist § > 0 and C' > 0 such that for any Q € MP(B", M,,(R))
and for any A € W]%/[é;(B”,Gl(]R)) where n > p > 5, p > q> 2 and %p > q
with A=' € L>(B") and

192013 + 47 VAl < 3

and

—AA+ AQ =0 in B™
A =1id on OB".

the following estimates hold
i)
1AV Ay < CllQ 5
2
i)

2
2

1A —idl|y < ClII s

iii)
|AT VAl < Cl1Q] gz

o1
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iv)
1A — idl]ss < Cl1Qug.

Proof of lemma 32:
First of all, we observe that

—AA+AQ =01in B"
A =1id on 0B".

is equivalent to

d*(A'dA) = —Q — A'dA- A'dA in B"
d(A'dA) = AVdAN AV dA in B (2.1)
LaBnA_ldA = 0.

From that we may infer that
A7 VAl < ClQl, g + CIATVAZ g
il z +O||ATVA| R,
< ClIQI| g +C3l[ ATV Al
2

IN

and thus, for § small enough such that C§ < % we have

147V Allagy < Ol 5-

Next, a short calculation - taking into account the equation which is satisfied
by A - reveals that

—AA —id) = [Q+2(A7IVA)) (A —id) + [Q + 2(A7'VA)?] in B"
A=t —id =0 on OB™.
Now, observe that our assumption guarantee that

b % s
Mb x Mp — M;

such that
nt

ST
Wis < M," — M where r = :
¢ n —2s
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Then we estimate

|A™ —id]| e

VAN VAN VAN

IN

IA

and thus we continue

1A — id| s

CllA™" —id]|

Of|AA™ — id)ag
Cll[Q+2(A'VA? (A - id)|| g
+||Q2 + 2(A‘1VA)2\|M5

Cll + 2(A7 VAP 5 A7 = i

+C||Q +2(A7'VA)

I3
2

note that in particular we have M; C M}

1
§||A—1 —id|[ap + C||Q + 2(A7'V A)

My

once 9§ is small enough, recall also our hypothesis

IN

n

-1 2
2012 +2(AVA) ||M2%
-1 2
201103 +4CI(A VAP g
2CHQHM§ +AC|| ATV ARy

2
2011925 +4CI2A
due to the first assertion

INIA

IN

already proved above
201121, +4CII9] 56

IN

because of our hypothesis
< clill,,z-

This shows that the second claimed inequality holds as well.

Furthermore, from the system (2.1) we deduce for r =

IA7VA| o
M1

<

IN

IN

IN

ng
n—p

Cllarp + CIAT VA4

CllQar + CIIA_IVAHMgIIA_IVAHML;
ClQ|pe +CIIQIIM2%||A_1VAIIM:%
thanks to the first assertion of our lemma
Cl g + COATTA e

according to our hypothesis

23
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and finally find

A7V Ay < ClIATVA|| e < ClIQ |-

Last, but not least we observe

V(A™ —id) = VATTAA™ = —A7'VAA™ —id) — A7'VA.
And we restrict our possible choice of a and b by the following additional
requirement (compare also to the proof of lemma 31)

1 1 2
<o
p b n

Under this supplementary hypothesis it holds

ng
n—p

pr
M,* x M? < M?" such that W}ﬁt — L where r =

So we obtain

A7 —idl|Z® < ClIA™ ~id]lwy,,
V(A — i) |y
Cl|A™'VAA™ — id)| |z + Cl| A~V Al| gy

CIAT'VA|| o ||A™ —id||yp + ||ATIVA|| or
M,.? a M, @
CllQl g l|A™ = idl[ g + Cl1Q gz

thanks to assertion iii)

CliSUl a2z + 112y

VAN VAN VAN VAN

IA

IN

due to assertion ii)
|| agp + 1] 2z
Cl1Q e,

IN A

and estimate iv) holds, too.



Chapter 3

The final gauge transform

3.1 Two technical lemmas towards the proof
of our gauge result

The first technical lemma is the following

Lemma 33. Let the dimension n satisfy n > 4 and let m € N*.
Then there exists g > 0 such that for every P € W}Q (B™,SO(m)) with

||VP||M1 < ¢&o

and for every QQ € W? 3 such that
Ml

—AQ —2VQ -VPP ' —Q(VPP 1?2 =01in B"
Q = id on OB".

the following holds: Q € L™ N W;% (B", M,,(R)) and
2

sup ||QX||LOO(B7L) S 1.
XGR"YL

Proof of lemma 33:
First of all, we will show that for all fixed X € R™ it holds

AX'QQ'X) > 0.
Note that

X'QQ'X =< X'Q,Q'X >=< (Q'X)", Q'X >=[Q'X]* e R

95
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where < -, - > denotes the standard Euclidean inner product.

In what follows, recall that P has values in SO(m), so we have in particular
(VPP Yt = -vPP1

Now, for fixed X we calculate in the sense of distributions - this is possible
due to the fact that we assume @) € Wjﬁ -

AX'QQ'X) = X'AQQ'X + X'QAQ'X +2X'VQ -VQ'X
= —2X'VQ-VPP'Q'X — X'Q(VPP')’Q'X
12X'Q(VPP™) . VQ'X — X'Q(VPP1)*Q'X
+2X'VQ - VQ'X

where we used the fact that () solves
~AQ —-2VQ-VPP ' - Q(VPP )2 =0.
Furthermore, observe that

—2X'VQ - (VPP HR'X = —2(VPP'Q'X) - (X'VQ)'
2X'Q(VPP™) - VQ'X

because for Y and Z in R™ we have
YiZz = 7.
And so we find

AX'IQQ'X) = 4X'Q(VPP™Y)-VQ'X
—2X'Q(VPP1)?.Q'X
+2X'VQ - VQ'X
—2X'Q(VPP™) . (VPP HQ'X —2X'VQ - VQ'X
—2X'Q(VPP1)?.Q'X
+2X'VQ - VQ'X
because of Cauchy-Schwarz
= 2X'Q(VPP )’ Q'X —2X'VQ -VQ'X
—2X'Q(VPP1)?.Q'X
+2X'VQ - VQ'X
since (VPP = —-VPP™!
= 0.

v



CHAPTER 3. THE FINAL GAUGE TRANSFORM o7

Thus, the classical maximum principle implies that

sup [|Q"X||Zc(pny < 1,
XeR™m

i.e. Q€ L>(B").
Hence n
Q(VPP ) € My.

Next, by lemma 9 we find the a-priori bounds for 1 < a < b < n with % > aq
IVQ- VPl < ClVP[uylQ —idllw2

S CSOHQ _Zde2
0, M

14

b

a

due to our hypothesis.
But from that we conclude that

Kp: W§y(B", My (R) — M?(B", M,,(R))
n +— —An—2Vn-VPP! (3.1)

where

4b
1<a<b<nand — > a.
n

is an isomorphism.
So in particular for a = 1,b= 3 and a = 2,0 = 7.
Finally, we look at the following special choice of 1, namely at n = Q—id. The

fact that the above map is an isomorphism implies that actually Q € W? 3
2
because

—An—2Vn-VPP™! = —AQ-2VQ-VPP™!
— Q(VPP ') e M;
since —AQ —2VQ - VPP~ —Q(VPP™')* =0.

And we have the obvious estimate

Q= idlw:

0,M;

<IVPllsz-

O

And as a last preparation of the proof of theorem 28, we will establish the
next lemma.
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Lemma 34. Assume that
4
2<q§ng<p<n,mw£2q
n

and let 1 <a<b< oo satisfy%’Za.
Then there exist g9 > 0 and C' > 0 such that for all 2 € MP(B", so(m)) with

12,3 < <o

there exists A € W]@g(B”, Gl (R)) such that A= € L>(B") and

(3.2)

—AA+AQ =01in B"
A =1id on OB".

and the following estimates hold

i)
149 Al < I, g
ii)
141 iy < €Y1,
i)
JATVA|| o < C|Q|pr wherer = L
qu q n _p
i)

1A —id||oe < ClQ[agz-

Proof of lemma 34:
From the proofs of lemma 31 and lemma 29 we know that the map

J U — Wfﬁ;(B",SO(m))
Q — P

is continuous for ¢ > 2, § < p < n with % >q.
Now, we will show that the following map

T: M (B, R@so(m)) — Wip(B", Mu(R))
n — Q
such that

—AQ —-2VQ -n—Qn*=0in B"
) =id on OB™
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is continuous for 2 < ¢ <p, § <p < n and %p > q, provided that
[Inllap < €0, €0 small enough.
In a next step we shall prove that
L77 : W()Q,Mg(Bnu Mm(R)) - Mé)(Bn7 MTﬂ(R))
u — —Au—2Vu-n—un?

is continuous and invertible once ¢; is small enough.
Observe that for 1 < a < b < 5 with % > a, according to lemma 9 we have

V-Vl < Cllullwr  ([Vnllag
0,M2
and similarly, due to lemma 10
() < Cllullwz  |Inllig-
0,Mp 4
Thus, for such a and b
Ly WOZ,Mb(an M (R)) — MJ(B", M,,(R))

is an isomorphism, provided that ¢, is small enough.
Next, let f € MP(B", My(R)) € MY(B™, M, (R)) (where p and ¢ are as

above) and let u be the unique solution of Lyu = f in W, ,(B", M,(R))

where % + ¢ < 2 (cf. also the proof of lemma 31).
From the fact that u solves L,u = f we find

—tr(Auu®) — 2tr(Vu - qut) — tr(un*u) = tr(fu')

and thus )
AUT + | Vul* + 2 < Vu,un > +|un|® =< f,u >

where < -,- > denotes the scalar product on M,,(R) given by < A, B >=
tr(AB").
And finally we have
2
A'uTJr < f,u>>0.

Now, let ¢ be a solution of the following problem

—Ap =< f,u> in B"
¢ =0on 0B"
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Thanks to the assumptions on the exponents we can estimate

lello < CllFllasellullag
< OlIfllglull sy
= Cllf1R-

All the information we have so far yields - together with the maximum prin-
ciple - that

2 Jul?
_C||f||Mg' < —lelleo < N +p<0

and finally
ullso < ClIflarz-

Again from the fact that L,u = f, and the fact that « is bounded, we find

HAu—QVu-VnHM;; Hf+U772HM5

1 ag + Huellool 17 asg
1f1agg + ClLAlaag 10?1 asg
Cllf a1+ 1%l az)
Cll A azp U+ lnlagglnl] - 2e0)

n—p
My,

d—q

n—p

M 'vg
n—gq

according to our assumption on the exponents.

IA AN A IA

CIf 1 aag (U + {0l azg 7]

Moreover, we have the following a-priori estimate

IVunllag - < Clinllag [[Vul| e
My,
a—q

< C€0||VU|| _np_
MTP
5
due to our assumption
< C€0||Vu|| _np_
M ng®

n—p

< Callullwz,,
q

Thus, our solution w is even in W3, L, is invertible also from M? to W, »
q g
(and continuous), provided that &g is small enough.
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Next, we W111 prove that the map 7 is continuous.
Let § € M%,"(B" R ® so(m)) such that

|10+ 6]lap < 0.

Furthermore, let QQ+g¢ solve L, 5(Q+¢q) = 0 with Q+¢ = id on the boundary
OB™. Then it holds

Lyisq = —Ly1sQ + LyQ =2VQ - 6 + Q((n + 6)> = n?)

with zero boundary condition. Due to the invertibility we have shown above,
we infer that q € W?2 oMP with the estimate

lallwz , < CUIVQI e 18]l

P
0, ]\1 4q
Fer

QU0 e ([nllagy +110]azy)

4q
I—q

CIVR, 101l 2,

IN

+CIIQ||w2 ||5|| f’(

n—p

ey +110]|azz)-

and thus 7 is continuous.
And hence - from the construction - also the map

K:ULP — Wie(B", M (R))
Q — A=QP

is continuous for 2 < ¢ <p, 5 <p<n Wlth >q.

Next, let p and ¢ be as before, let further beeg > 0,C' > 0and1 <a <b< o0
with %’ > q. Then set
quézb o { Q0 € UZP such that A := KC(12) satisfies 3.2 }

€0, :

and the estimates 1) up to iv)

We claim that for all choices of a, b, p and g which respect the supplementary
requirements there exist ¢p > 0 and C' > 0 such that UZP = WI'S 20 For
this purpose it suffices to show that there exist g9 > 0 and C > O such that
WEES * is closed and open in ULP and not empty.

Wgopgb is not empty for C > 0 and e := 3 where § is given by lemma 32:

Due to the fact that K is continuous, in a MP-neighbourhood of zero, we have
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that ||V A||xg, [|A—id||e and |[A™" —id||o are small. Hence, [[A™'VA||pp <
g once the neighbourhood is small enough. Thanks to lemma 32, this shows
that for our choice of g, W' * i not empty.
Wg(f(’?’b is closed in UIP:
Let Q, € Wg(;f’él’b such that

Qp — Q in MY
The continuity of the map K implies that Ay := K(£2;) converge strongly to

a limit Ay := K(Qu) in W3,,. Our assumption that ), € Wg(;pg’*’ and the
q ’
convergence of the sequence give that

14V Al < ClIUIL 5 < Ceo

and

145" = id||o < Cl|Qul|ap < C
which implies that [|A; ||« and [[VA Agllap = [|A, VA vy are uni-
formly bounded. Thus, ||[VA,"||ap is uniformly bounded as well. Hence,
there exists a subsequence which converges strongly in L*(B"™), s < 4*. Fi-
nally, from the identity A, A" = A, ' Ay we find that A, has to converge to
A7}, and thus, the required properties hold, i. e. Q. € WIFS b,

ng’c‘l’b is open in ULP:
Let gy be small enough and let C' be given by lemma 32. Moreover, let
Qe WIPSY and A == K(Q).

3
In particular, we have

[|A™} ] < 0.
Now, let a € WOQM(?(B", M,,(R)) and we have A +a = A(id + A~ 'a). From
that we obtain - if ||a||y2  is small enough
My

(A +a)™ = A7l < ClA el lall2 .

In addition, we estimate
(A+a)7'V(A+a) - AT'VAhy < |[[(A+a)™ = ATVAl |y

+||(A+ CL)_1VCL||MZL

OV A A ollallye

IN

p
q

HIVallg [I(A+a) o
Cllallwz,-

P
M, q

IN
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Since K is continuous and

HA_IVAHMZ < CHQHMQ% < 060

there exists a radius pq such that for every w € M} with |[w|[pp < pa we
have

(2 + )7 VK(Q + ) |arp < 20z,

If g and pq are small enough, such that po + 2Cey + 9 < § we can apply
lemma 32 in order to see that K(24+w) = A+a, for some a as above, satisfies
the required properties.

O

3.2 Proof of theorem 28

Before we come to the proof of theorem 28, let us establish the fact, that
what we have seen in lemma 34 holds also for the limit case p = 5 and ¢ = 2.
More precisely, we will show the following lemma

Lemma 35. Let 1 < a,b < oo be such that %b > a. There exist g > 0 and
C > 0 such that for all @ € M3 (B", so(m)) which satisfy

[1€2]] < &

Mg (Bm) —

there exists A € L> N W;% (B™, Gl (R)) with the following properties

2

A~ e MP(B™)

—AA+ AQ =0 in B"
A =1id on OB™.
Moreover, the following estimates hold

IAT' VAl uy < ClQI 3
2

147~ idl|agy < CIOM] 3
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Proof of lemma 35:
Let § <p<mn,¢>2and % > q. Moreover, assume that Q € M} with

Iell,5 <=
where gg is given by lemma 34. In addition, let €, be a sequence in M?,
which converges to the given  (in M) and satisfies

||Qk||M2% < €p.

Note that this can be achieved by a standard mollification argument.
Now, recall that the for the Aj, associated to €, we have the following
estimates (see lemma 33 and lemma 34):

|| Ak|loo < 1 cf. lemma 33, P € SO(m)
IV Al < Nl 3 < Ce
145V Akl lay < ClIUI 3 < Ceo
2

|AL T —idd]]pp < OHQkHMQ% < Cey.

From the last inequalities we deduce that the sequence {A,;l} is uniformly

bounded, namely it holds
14 e < C

From the first and the second inequality we infer that there exists a subse-
quence {A;} C W' which converges weakly to some limit A (in W4).
Obviously, A and € fulfil

—AA+AQ =01in B"
A =idon 0B".

Now, note that

(VA Akl = || ALV Akl [ap < Ceo.
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From this follows that

VA e = VA ARAL Lo
< VA Akl lap 1A |a
= [IVA Al larp 1145 oz
Ceg

IA

where
I 1 1 1 1
E—g—i-ganda—z-i-—.
Due to this last estimate, we may assume - if necessary by passing to a
subsequence, which we still denote {A,;l} - that our subsequence satisfies
A7t € WU and that the A converge weakly to some limit A.
Hence the sequence {A,;l} converge strongly in L® where s < d* = n”—_dd (d*
is positive because according to our hypothesis n > 4 > d).
On the other hand, we know that - since {A;} converges weakly in Wh* -
this same sequence converges strongly to A in L" where r < 4* = ﬁ <d*.
These facts imply that in the following equality we can pass to the limit -at

least in the sense of distributions -
AN AL = A — kA =id.
This finally leads to the conclusion that
A=A

This shows that A is invertible and thus has to be bounded.
And we are able to conclude that in fact A belongs to Wjﬁ (B™, Gl,,(R)),
2

namely we have that

Allws, < ClAA] 4
MP 2
< cllael, 5
because of AA + AQ =0
< CllAllliel, 3
< o0

according to our hypothesis that HQHM% < &g
2
and the fact that A is bounded.

The estimates i) and ii) follow from lemma 34.



CHAPTER 3. THE FINAL GAUGE TRANSFORM 66

Proof of theorem 28:

First of all, we would like to point out that all the following equalities take
place in the sense of distributions.

The underlying calculations make - at first instance - make formally seance,
and since all the involved quantities are at least in L', they can be made
rigorous in the seance of distributions.

Let Q € Mf(B”, so(m)) and let u € MQ% be a solution of
—Au = Qu.

Moreover, let P € W;% (B™,SO(m)) be given by lemma 29. Then it holds

2

—A(Pv) = APv — PAv — 2div(V Pv).

Now, set w := Pv. A short calculation yields that —Av = Qu is equivalent

to
—Aw = [APP™' + PQP ' w — 2div(VPP'w).

Due to the fact that P satisfies 2 [APP~! — PAP™!| + PQP~! = 0, the

above equality is equivalent to

1
2

1
—Aw — 3 [APP*1 + PAP”} w+ 2div(VPP 'w) = 0.
Now, observe that

— [APPT'+ PAPT'] = —div(VPP'+PVP')+2VP.-VP!
= 2VP.-VP!
since VPP ! = —pvp!
= 2VP(—P'VPP™)
= —2(VPP1)?

where

—2(VPP')? = =2 (0, PP™")*.
j=1

Thus our original equation is equivalent to

—Aw — (VPP "2w + 2div(VPP'w) =0
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where .
(VPP 1)? € My (B",Sym}),

i. e. (VPP71)? has values in the space of symmetric, non-negative m x m-

matrices. The fact that this quantity belongs to My is a consequence of the
facts that on one hand, P € SO(m) and on the other hand that, according
to theorem 96, W' , embeds into M} and we have the estimates (see also

1
M
lemma 29)

IVP|[ap < Cl[P —id|lw2 ,
MP

< C’HQHMQg < Ce < gp.

Note that the last estimate gives us an indication how small € has to be.
Next, we consider the matrix ) which is associated to P via lemma 29
Multiplying the last equation by @) from the left leads to

0 = —QAw— Q(VPP 1w +2Qdiv(VPP 'w)
= —QAw— [Q(VPP')+2VQ - VPP w+ 2div(QVPP 'w)
= —QAw + AQu + 2div(QV PP w)
because —AQ — 2VQ - VPP —Q(VPP 1)* =0
= div(—QVw + VQu +2QVPP™)

Remember that we sat w = Pu, so we can re-substitute u = P~'w which
leads to

div((QP)Vu — V(QP)u) = 0.
Finally we set A := QP and obtain
AAu — AAu =10
which can be rephrased - since —Au = Qu - as
AAQu — AAu =0
and which finally implies the claimed property
AA+AQ =0

since we assume that u # 0. Note that in the last step we do not claim an
equivalence!

The further properties of A stated in our theorem follow from lemma 33 ,
lemma 35 and lemma 29 and obviously from the construction of A.

OJ
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Applications

In this section we want to apply the previous gauge result in order to write

problems of the form
—Au = Qu

where () is antisymmetric in divergence form, see, theorem E in the intro-

duction.

We will prove that

Theorem 36. Let n >4 and let m € N*. .
Assume that uw € M7 (B",R™), Au € L, and Q € M7 (B", so(m)) such that

loc

ioll,5 <
where € 1s given by theorem 28.
Then
—Au = Qu (4.1)
15 equivalent to
div(AVu — VAu) =0 (4.2)

where A is again given by theorem 28.

Proof of theorem 36:

First, we will show that the assumption that u solves —Au = Qu together
with the properties of A we have at hand, implies that div(AVu—V Au) = 0:
In particular we have that A € L*°NW™2, thus we may calculate (use density

68
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of C* in the usual Lebesgue and Sobolev spaces)

div(AVu — VAu) = AAu— AAu
= AAu+ AQu because AA + AQ =0
= —AQu + AQu because —Au = Qu
= 0.

Next we will show that also the reverse implication holds, once we have the

additional assumption that u € L}, :

As above, we have that almost everywhere
0 = div(AVu — VAu) = AAu — AAu.
Since A is almost everywhere invertible, this implies that
0=Au—A""AAu=Au+ Qua.e..
This later statement is obviously equivalent to
—Au = Qu a.e.

Remark 37.

i) In dimension n = 1 and n = 2 it is obvious that the hypothesis v, €
L? immediately imply that v € L N W31,

ii) In arbitrary dimension, the fact that under the hypothesis that u, Q2 €

MZ% imply in particular that Au € L'. Such an assumption was studied
in [39] (in particular proof of theorem I1.4) and leads to the conclusion
that
u € L®NW? 4 locally.
M2
2



Part V

Some minor miscellaneous
results
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Regularity in low dimensions

We start with the low-dimensional case.

Thanks to proposition 117 we know that - for arbitrary dimension! - under
appropriate assumptions on a and b the Jacobean belongs to F: 32. In dimen-
sion n = 1 or n = 2 this is enough to conclude that u is continuous. More
precisely we have

Proposition 38. Let n = 1,2 and assume that f € F)5(R"). Then any
solution u of (1) is continuous and bounded.

Proof of proposition 38:
Recall that for f € F, = b!

f=Y fins.
k=0
This enables us to rewrite our equation (1) as
Au=f+) fr
k>1

The advantage of the latter decomposition consists in the separation of the
contribution to f whose Fourier support is contained in the unit ball around
the origin from the other contributions! And the solution u can be written
as

- A_lfo + A—l(z fk)
k>1
= U + Us.

Our strategy is to show that u; as well as us is continuous, so also their sum
is continuous.

71
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What concerns u;, observe that due to the Paley-Wiener theorem f° is an-
alytic, so in particular continuous. This implies immediately - by classical
results (see e.g. [24]) - that u; is continuous.

But since f0 € Bi, for all s € R this can be improved via the following
observations:

e Since f* € BY, we know that f* € By, C Fyy = W2 (sce theorem
74). So u; € Wh? (see e.g. [8]) and in particular u; € L.

e Moreover, we have that ||u1|B‘29J{2|| < ||f0|B§1|| due to proposition 86

( proposition 85 assures us that f° belongs to 35,1 for s > 0). Once we
have this, we estimate for s > 0

lua| B3|l < C(lJuallz + |lua| BSE?|))
due to proposition 85
C(lluall2 + 11185, 11)
C(|[ullz + CIf°1Bs4l])

00
again by the fact that f° € B{ 5 Vs and theorem 74

AN VANV

Now, this information together with theorem 75 below of Sickel and
Triebel leads to the conclusion that w; is not only continuous but also
bounded!

Next, we will show that us is bounded and continuous. In order to reach this
goal, we show that uy, € 380,13 We find the following estimates

ual Bl = > Mus] oo
s=0
= > 272" us |
s=0
= O 27%||(Auz)*||
s=0

This last passage holds thanks to the lemma below (see [55] for instance).

For s = 0 we observe
) = (Y

k>1

which implies
supp(F(uz)) C (B1(0))°
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because of the fact that

supp(F(D_ f*)) C (B1(0))".

k>1

So in this case too, we can apply lemma 39 in order to conclude that also for
s = 0 we have

luzlloe < C(Auz)° |-

Lemma 39. ([55]) Let g be a function such that its Fourier image is sup-
ported in an annulus A with radii r1,ro ~ 2°. Then

2" lgllp = [IV™9llp » 1 <p < oo

Back to our estimate, we continue

lua| BY, 1] < C Y 27 |(Aug)’| oo
s=0

= OY 271 /Pl

k>1
oo s+1
= Y 2 F Y pnd)ll
s=0 k=s—1
< Y271
5=0
thanks to a Fourier multiplier result
similar to the one we state in the second chapter
for further details we refer to [61]
— C|ifIBZA
< C[If[Fll
because of theorem 74
if n = 1, use in addition FY{, C Fy,
< o0

according to our assumption.

This shows that u, belongs to BY, | (R?).

Alternatively one could make use of the lifting property, proposition 86, to
show that uy € F7, C C.

The last ingredient is the embedding result 75 due to Sickel/Triebel (see [47]).
Recall that C' denotes the space of all uniformly continuous functions on R™.
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In our case we us the embedding of BY, ;(R?) into C. Thus also us is contin-
uous and bounded.

This leads immediately to the assertion we claimed because v as a sum of
two bounded continuous functions is again continuous and bounded.

0J

In higher dimension, the embedding result of Sickel and Triebel (see theorem
75 below) does not help us any longer in order to conclude that a solution of
(1) where f € F?, is continuous.

But as we saw in Part II, this problem can be avoided once we start with
adapted hypothesis involving Morrey-Besov spaces.
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Regularity results for —Au = ab

Last, but not least, if we drop the improved algebraic structure of the Ja-
cobean and in stead of this look at

—Au = ab (2.1)
we have the following assertion.

Proposition 40. Assume that a € N° and b € NY with

Pp1,491,71 Pp2,92,72

1 1
n(——l——) < 2
y4 P2
1
_|_

1
~ 4= =1
a9
1 1
—4+— = 1
. T2
Then any solution of (2.1) is continuous.
Proof of proposition 40:
To start with, note that our problem
—Au = ab (2.2)

can be rewritten as

—Aul = 7r1(a,b)
—Auy = my(a,b

—Au:), = Wg(a,b)

Analysis of —Au; = m1(a,b) respectively —Auz = m3(a,b)

5
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First, observe that thanks to the our assumptions there exists

1 1
0<e< 2—n<——i——).
y4i D2
1

Our next goal is to show that m(a,b) € N, where - + = 1: In order to
reach this goal, let us recall the following analogue of proposition 123 in the
framework of Besov-Morrey spaces (see for instance [32]).

Lemma 41. (/32]) Let {fx}, k > 0 be a sequence of tempered distribu-
tions such that for some A > 0 supp Fuy C Boa(0) and supp Fup C
{€ e R"| A2 < |¢] < A¥T} for k > 0. Then

||ka| S ol < CCY ol M2+ 1] {2581 fl Mg 122 14D

According to this, it is enough to show that

00 s—2
2D dk [y < 0.
s=0 k=0

In fact, we have

0 52 00 s—2
ST by < 323 g 1l
s=0 k=0

< (szsuz i) (ZHbSHMmf
< 0||2—6S|Zf’f| |7 (MED 1[0y Ngy .|
< UGBV

here we use lemma 126 with the modification
that instead of Lebesgue-norms we have Morrey-norms
the proof in this different setting is the same

CUFING, gy |10y NG, ]
< o0

IN

according to our hypothesis.

Now, we apply the same procedure as in the previous proof and conclude
that the solution w;; of

—Auyy = Zf’f (2.3)

k>1
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where f € N, 7, belongs to Bg; /7 which embeds to C' since we assumed
that

2—2—6>0.
b

Moreover, as before we have that the solution u; o of
_Aul,l) = fO

with f € N 7, is continuous.
So we find that u; = w9 + uy; is continuous.
The problem

—Aug = m3(a,b)

is treated in exactly the same manner, so also ug is continuous.
It remains to study the second equation:

Analysis of —Auy = ms(a,b)

In the case of this remaining part where the frequencies of a and b are com-
parable, we split our problem further:

Since
o) s+1 [e'e) s+1

mo(a,b) = Z Z atb® = Z Z (Poxa®b*+(1—pp)"*a"b*) =: 7 0(a, b)+721(a,b)
s=0 k=s—1 s=0 k=s—1

in what follows, we look at the two following equations

_Au2,0 = 7?2,0(@, b)
_AUQJ = 77'2&(@, b) (24)

What concerns the first equation, we can immediately conclude that the solu-
tion us o is continuous: This is obtained from the fact that supp Fao(a,b) C
B5(0) which implies that 750(a,b) € C™ together with classical regularity
theory (see e.g. [24]).

In the case of the second equation we shall show that us; € BS,  where as
before € > 0 is such that

1 1
0<e< 2—n<——i——).
b1 D2
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So we find
2| Biosoll = sup 2°Jus [l
s>0
= sup 27 2°[us ||
s>0
< 2| (— D) e
s>0
= [Tl BLLl
- -n(y
< ||772 llBoooo ||
< 121Ny ool
due to the embedding result of Kozono/Yamazaki (see theorem (97))
oo I+1
= sup g * (Y D (1= o)+t M|
$20 1=0 k=I-1

IA
I
Q

1685 * (1 = o) b MY
+1}

s20 4 ke{l 1 ,,,,,
< Csu C  max 1— )Y x v | MP
< Copd e, max 0 @) 5|

due to multiplier result of Kozono/Yamazaki (see lemma 98
= C 20— 1—3) — o) * a"b| M

;ke{ﬂ?.,m}” * (( ) = o)+ a0 | MY

< k1l Mp
B Zke{l 1?.%1-4—1}“ | ||

by the same result as in the second last step

1

< > max A

1=0
< CZIlallMp1||||bl|M§§||
< C(lea’“|M’“|!”) (ZIIUIM”?II”)
= C||a| pranr 101N, g,

< oo according to our hypothesis.
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Products in h!

A natural question that arises when we look at the above proposition is the
following: Is it possible to give up the additional algebraic structure, i.e.
the determinant structure, and replace it by other assumptions in order to
obtain the assertion that a certain product of first derivatives has an improved
integrability property, i.e. we wish to find conditions under which a,b, € b*,
or more generally, under which conditions a product belongs to h'.

One possible answer in this direction is given in the lemma below.

Lemma 42. Assume that there exist ¢ > 0 and p > 1 such that a € FJ,(R")
and b € LP (R™)where
1 1
p p
Then
abe F5, C FY, =h".

Note that - in case that ¢ is an integer - what we said at the beginning of this
section holds also in the context of this lemma. In this case we may apply in
addition Sobolev’s embedding theorem.

Since the proof of this result is on one hand an immediate consequence of
classical results and on the other hand implied by the technique applied in
order to prove the previous results, we postpone its proof to the appendix.

Proof of lemma 42:

Let us first of all explain what we can obtain as an immediate consequence
of the technique we used in the proof of proposition 117.

We will start with discussing the case a € W2?(R") and b € W'# (R") where
p > 1and %—I—I% = 1. Our intermediate goal is to show that a,b, € F10,2 =pl.

79
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We start with the estimates for m(a,, b,) and m3(ay, by).

As before, thanks to proposition 123 it remains to show that ||cx | L' (1?)]| <
k—2 at bk

oo where ¢, = /"7 al b

First note that sup; | tho al| € LP. This holds since a, € L? = F}, which

together with lemma 126 gives that || SUDg> IS k| |, < Cllaxl], < oo

Apart from that we have that ||(3.7,(0F)? )2 ||y = ||by |ED 5l < Cliby |-

we can estimate
o0

[lew | LN = 10O (e))? [l

k=0

=

k=0 t=0
S o0
< llsup > all (o))
=Y =0 k=0
< Cllag|lp byl
where in the last step we used Holder’s inequality.

5—2 tbs

So summarised we have the following estimate for Y 77°, > /"7 alb?

S

s=2 t=

S—

2
aybylly < Cller | LI < Cllag]lp 115yl

0

m3(ay, by) ™1 (ay,b;) and ms(a,, by) can be estimated in exactly the same way.

In contrast to the case of the determinant, here we have to estimate m3(a,, by).
This can be done as follows:

We estimate
s+3

HZSOk*ka
k=0

similarly to what we have done in the proof of lemma 131. More precisely
we have

[e.9]

/ <Zab5> = Z/ a0 (N F (onF fe)

Z/ |a;||b;|<s+4>||¢1||1|rh||bmo
s=0 R™

as in the proof of lemma 131

IN
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and continue

[ (Zasp)n < o [ latimgiz ol
R™ * =0 s=0 Y R"

< Clltllons [ S 2lat 1
Rn s=0
< ClMlsmo(IIV2allp + laz[p) [ V0]

again by lemma 128

This proof shows that the assumption a € W??(R") can be weakened as
follows: Since for all € > 0 there exists a constant C(¢) such that

s+4 < (C(g)2% (3.1)

we just need that a, belongs to F;,(R") = H;(R") for some ¢ > 0 where

H:(R™) denotes the Bessel-potential space of all tempered distributions f for
which
IFHA A+ |22 F f], < oo

And finally, since we did not integrate by parts we can even prove the stronger
result that under the hypothesis that a € Fj,(R") and b € L” (R™) where
p > 1and % —i—}% = 1 the product ab € FRQ: The contributions m; and w3 are
estimated as before and for m, we have

/n<iatbs>h - g/na%(if‘l(wkffk)

s=0
< Z/R |a'[16°[(s + D@1 1] 7] [omo
s=0 "

similarly to the proof of lemma 131

S NGIERANI
s=0 "

< Clltllma [ >~ 2la'
Rn s=0
< Cl[0l[omollall£z, 110]]p

As claimed in section 1, it is even possible to obtain a better result.
For the estimates of m(a,b) and m3(a, b) we apply the result below (see [43])
where we set s =¢, ry =p, ro =p' and ¢ = 2:
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Proposition 43. ([/3]) Let s € R and 0 < ¢ < cc.

Assume that
1 1 1

p mn T

Let 0 <p<oo,0<r <ooand 0 <ry < oo.Then

oo I+2

1D > P 1Bl < CIFIES ol - 19|, o]

=2 k=0

where C' is independent of f and g.
If ro = oo then we have

oo 142

1D FaM1E Il < CIFIES ol - Mgl

1=2 k=0
Similar conclusions hold if we replace the F-spaces by B-spaces.

What concerns s (a, b) the claim follows immediately from the next propo-
sition (again, see [43] for instance):

Proposition 44. ([/3]) Assume that

11 1
p ™ )
and
1 1 1
-< — 4 —.
q q1 q2
Let 51,80 € R, 0 < p,ry,m0 <00 and 0 < q,q1,qz < 0.
Suppose

1
s1+ s > n-max(0,— — 1).
p

Further, let ¢ > p. Then

[ee}
max || S G E < Ol FIFS - 1912 |
k=0

_1<j<1 1,91 72,92

where C' is independent of f and g.
The same conclusion holds also if we replace all the F'-spaces by B-spaces,
even for 0 < p,ri,ry < 00.

This completes our proof.
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O

Remark 45. If we look at a bounded domain I C R instead of R™ and at
a € W?%(R) and b € L*(R), lemma 42 can be proved alternatively as follows:
Note that the Sobolev embeddings tell us that a, € L°°(I) which implies that
azb € L*(I) = F3,(I) and the embedding Fy,(I) = L*(I) — FT,(I) = b'(I)
- a special case of the theorem 78 - immediately leads to the conclusion that
azb, € h1(I).
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Integrability properties of
products of derivatives

The subsequent discussion is motivated by lemma 42 and the following result
of Evans-Miiller (see [20]; alternatively obtained also by Semmes (see [45])).

Theorem 46. ([20],[45]) Let u € W,2*(R?) be a weak solution of

loc
—Au = f inR?

where f € L} (R?) and

loc

/=0

Then
2 _ 2 1 (2
Ugtly, Uy — Uy € ,.(R7).

What about a global version of this result? Let us say a few words concerning
this question:
Assume that u € W2?(R?) is a weak solution of

—Au = fin R?

with f € L'(R?)and
f=0.

In this case the Fourier transform gives
€172 =@ € L*(R?).

This together with the fact that f is continuous (since f € L'(R?)) implies
immediately that

foy=1 r=o
R2

84
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But from this we conclude that f = 0 a.e. since we assumed that f is posi-
tive.

Now, what about harmonic tempered distributions? Since the only harmonic
tempered distributions u are polynomials, they are not in W2 unless they
are identically zero. But for each bounded open C*°-domain {2 we have that
uzu, € LP(Q) for all p > 1. So due to theorem 78 we immediately conclude
that u,uy € F{yy,!

This embedding is in fact the key point in what follows.

Since our approach involves estimates which depend on the dimension we
are working in, what follows is grouped according to the dimension of the
underlying Euclidean space.

In dimension 1 we have:

Proposition 47. Let u € WY(R) be a weak solution of
—Au=finR
where f € L'(R). Then
Usty = ul € FT,H(R).

Proof of proposition 47:

The proof of this proposition is quite similar to the proof of proposition 117.
The estimates of 7 (uy, u,) and m3(u,, u,) can be obtained in exactly the
same way as in the case of proposition 117.

What concerns the remaining term, according to what we have seen so far,
it is sufficient to have a closer look at

s+3

> [ (37 o) @)

where t = s+ j with j € {—1,0, 1}. In this case an integration by part gives

o0 t 5+3 » 0 9 5+3 »
;/Ruxu;(;f (wkffk)) = —;O/Ru u;%(kzo}" ((pkffk>>

00 5+3
P REHOSERIERR)

= I+1II. (4.3)
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Now, the desired estimate for I is obtained as in the proof of proposition
117.

In case of 11, the corresponding estimate is based on the two following ob-
servations.

Lemma 48. Let u and f have the same meaning as above.
Then for s =0,1,2,... the following estimate holds

_3s
[w’ll < C|f][1272

Proof of lemma 48:

We have
ut = FHpstt) = F (sl 72 f)
where R
psf € L%
with R
s flloo < C[If]]4
and

3s

s < (277,

1 1€ X supp o

This last bound is obtained as follows

1

2 (/ 74d7">7
supp s
( -3 28+1>
2s—1

I |£|72Xsupp ©s

Moreover we will need one additional information:

Lemma 49. Let u and f have the same meaning as above.
Then for s =0,1,2,... the following estimate holds

1l < ClIf]123

Proof of lemma 49:
We have

ul, = F N ps€%1) = F (s f)
where R
felL>
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with R
[ flloo < C[IfII1
and
llpsll2 < 25|01 ]o-
So
lud,ll: = Cllesfll2
< Clfl sl
< C|f]:22.

So we estimate /1 in the following manner

o] s+3 fe'e) s+3
S [t (S Farn) < 3 [l Y F @)
s=0 /R k=0 s=0 7R k=0

remember that ¢t = s + j where j € {—1,0,1}

o) s+3

< D llle sl D || 4|
5=0 k=0 *°
o) s+3

Bsy, o 5

< DOl F sl D || 4|
5=0 k=0 o
by lemma 48
[e'e) s s+3

< O ¥ A28 Y ||« il
5=0 k=0 o
by lemma 49
> _3s El

< Y ClAR2 =122 (s + DRl lbmo
s=0
as we have seen earlier

<

Ci2‘3523255
s=0

for any ¢ ( see also 3.1)

00
< szssfs
s=0

< 0.

This finally completes the proof of the global version of our result in one
dimension.
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O

Remark 50. Again let us say why these arguments fail in higher dimension.
First of all, note that in general we have for dimension n

s(n—4)
]l < ClI 272,

Moreover, also the estimate from lemma 49 are different in dimension n. In
particular, we have
ubell2 < ClI S22

This shows that already in dimension 2 the additional powers of 2 which arise
from the bmo-contribution, namely 2°° can no longer be absorbed.

Now, let us come pass to higher dimensions.

First of all, as an immediate consequence of lemma 42 we have

Lemma 51. Assume that u € WP(R"™) with p € (1,00) is a solution in R™

of
—Au=f

where

feLP R
Let © = z; where i € {1,...,n} and y = z; where j € {1,...,n} then
Ug Uy € F11,2(Rn) C Fﬁz(Rn) = h'(R").

Proof of lemma 51:
As mentioned above, lemma 51 is an immediate consequence of lemma 42
and the well known fact that

Au € LP with p € (1,00) = V?u € L.
0J

From the article of Evans/Miiller (see [20]) we learn that in the case of a
radially symmetric right hand side, i.e. in the case

—Au=f

where f € L' is radially symmetric, the sign condition f > 0 can be dropped.
This phenomena leads to the question: What is particular about radially
symmetric integrable functions? In fact the subsequent theorem (see e.g.
[53]) provides us with an answer:
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Theorem 52. (/53]) Suppose f € L'(R"), where n > 2, is a radial function,
i.e. f(z) = fo(|lz]) for a.e. x € R". Then the Fourier transform f is also
radial and has the form f(x) = Fo(|x|) for all z € R™, where

Fo(lz|) = Fo(r) = 27T7“[(n2)/2]/ fo(S)J(n_g)/2(27T7"S)Sn/2 ds.
0

Here J; with k € R greater than —% denotes the Bessel function

o (t/2)k . ! its 2N\ (2k—1)/2
M) = ik + 0200 _/_16 (1= )02 ds

for t > 0.
This fact leads us to the the following result.

Proposition 53. Assume that u € WY2(R™), with n > 2, is a solution of
—Au=f
where f € 8" with f bounded and
f=o(g )

for some ¢ > 0. Let x = z; where i € {1,...,n} and y = z; where j €
{1,...,n} then
ugzuy € BY'y C Y,

where 1 < €.

Proof of proposition 53:
In order to establish the assertion we need the following lemma.

Lemma 54. Let | be chosen big enough such that for & > 2!=1

F(©)] < Clg|~ =D/,

Then for s > | we have
gl < €27

where v = z; where i € {1,...,n}.
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Proof of lemma 54:
In fact, we can estimate

luslls = 11F 7 (s F (w))]]2
||FH pslit) |2
OH%&ﬁAHz
Cllps&i 11722
Cllps&ile| ™" 272721¢ 72 2
1@slloo I1ET 227 X gup g,
C | |f|_(n_2)/2_6_1Xsuppsos||2

1

(1 —9)—9e_ _ 2
C(/ p—(n=2)=2:=2,n 1dr>
25—1ST§25+1

25+1 1

C(/ piT% dr) ’
gs—1

C27%

IA I

2

IA A IA

IN

IN

IN

O

We start with the estimate of 7 (u, u,): Due to proposition 123 it is enough
to estimate ||2%51 S 52 ubuy | 1H(LY(R™))|| < co. We have

t=0
s—2 fo'e) s—2
1290 b INENR)|] = D 2] by
t=0 s=0 k=0
00 s—2
< Yoo (Y lduslh)
s=0 k=0
< Y2 (Y Il llllz)
s=0 k=0
< Z 9se1 <C2—s€ Z 02—55>
s=0 k=0
< C Z 25(51 —€)
s=0
< 00.

(remember that we assumed &; < ¢)

The corresponding estimate for m3(u,,u,) is derived in the same way.
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1
o st wutus €

It remains to establish the announced estimate for » % > " | ujuy

B (R™) C F10,2(Rn>-

In order to analyse the remaining contribution, we can apply the following
theorem which guarantees that this term too can be handled as well. In order
to state this result, let us start with a technical definition.

Definition 55 (B2(R"™)). Let 0 < p < oo. BP(R") is the set of all sequences
b with the following properties. b = {by},—, is a sequence of elements by, €
S'(R™) N LP(R™) such that

supp Fby, C {§ | €] < 2’“} fork > 0.

Proposition 56. ([/3]) Suppose b € BY(R™).

i) Lets>n-max((),zl)—1,%— ), 0<p<ooand0 < q<oc.

If 12720, LP(R™, 19)|| = A < oo, then the series ) b; converge in
S'(R™) to a limit f € F; (R"), and the estimate ||f|F; (R")|| < CA
takes place with some constant C' independent of b.

i) Lets>n-max(0,zl)—1),0<p§ooand0<q§oo.

If ||27°b,[19(LP(R™))|| = A < oo, then the series Y b; converge in
S'(R™) to a limit f € B, (R"), and the estimate ||f|B, (R")|| < CA
takes place with some constant C' independent of b.

For a proof of this proposition see [43].

Again we set t = s for the moment and assume that £; > 0. Thanks to
proposition 56 it is enough to show that

o0

ZQSElHu;u;Hl < 00.
s=0
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In fact,

o0

> 2 gl

s=0

IN

IN

IN

<

-1

0
o2 fusupll+ > 2% uus |y
s=l

s=0
where [ is as in the lemma above

C+ > 2% lusul ||y
s=l
since the first addend is a finite sum of finite addends

C + i 2881 2—256

s=l

due to the preceding lemma and Holder’s inequality

0+0§:2—€2

s=l

for some 9 > 0
remember that we assumed 1 < 2¢

Q.

The assertion about ma(u,,u,) in the case ¢ = 0 follows immediately from
the calculation above because BfY, C BY ;.

This completes the proof of proposition 53 since similar estimates hold also
if we look at ¢t = s+ j with j € {—1,1}.

O

Note that in comparison to the result of Evans/Miiller and Semmes here we
have a global result for arbitrary dimension n > 2 with better estimates.
Note that in the radially symmetric case with n = 2 the above cited theorem
together with the following lemma (see again [53]) give that

f=o0(¢2).

Lemma 57. ([53]) J,.(r) = \/2/7r cos(r—mm/2—m/4)+O0(r=3/2) asr — oo.

In particular,

Jn(1) = O(r~Y?) asr — oo.

Apart from this, we know that for any f € L!

|f<€>’ — 0 uniformly as |£| —00

and in particular for ¢ € C§° we have

if |¢| = R.

2] < ClIVelle R



Appendix A

Definitions and standard results

In this first appendix we summarise all the relevant definitions of function
spaces and state those assertions related to them which are important for
our work.

The aim is twofold, one hand there is the sake of completeness, on the other
hand, we would like to provide a self-contained presentation of our research,
which of course necessitates an introduction to the framework of function
spaces in which our estimates take place.

A.1 Hardy spaces and BMO /bmo

Definition 58 (Hardy spaces). Let f be a tempered distribution and let
0 < p < oo. Then f belongs to the (homogeneous) Hardy space $HP(R™) if
there is an element ¢ € S with [ ¢ dx # 0 such that M,f € LP(R™) where
the maximal function M, [ is defined as follows

M, f(z) = sup |(f = @) (z)]
0
where
o) = (1 2), 150
Remark 59. If we set || M, f||» = || f||s» this defines a norm on $? if p > 1.

Remark 60. The following alternative but equivalent characterisation of
$H1(R™) will be useful when we compare homogeneous function spaces with
their non-homogeneous analogues.

We say that a function f belongs to $! if it is in L' and in addition all
its Riesz transforms R;f belong to L' too where the Riesz transforms are
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defined as follows
(RiN)(€) =FfOZj=1,...,n

and where A denotes the Fourier transform.

Note that this alternative definition of $§*(R™) provides us with a rather easy
necessary condition for a function to belong to this space: If R;f belongs
to L' then (R, f)" is continuous which implies that we must have f(0) = 0.
This finally implies that [ f dz = 0.

So it is obvious that $' is strictly contained in L! since for example the
characteristic function of the unit ball belongs to L' but it can not belong
to $H! because its mean value does not vanish.

Definition 61 (Non-homogeneous Hardy spaces hP(R™)). Let f be a tem-
pered distribution and let 0 < p < oo. Then f belongs to hP(R™) if there is an

element o € S with [ ¢ dx # 0 such that Mél)f € LP(R™) where the mazimal
function Mél)f is defined as follows

M f(z) = sup |(f *p)(2)]

0<t<1

where
pi(x) =t "t z), t >0

Remark 62. There is a counterpart for remark 60 in the case of the non-
homogeneous Hardy spaces. We say that f € h' if f € L' and r;f € L*
for 5 = 1,...,n where 7;f denotes the non-homogenecous Riesz transform
defined as follows .

j

rif :f‘l(l/)|x|]-"f)j: 1,...n

where 1 is an infinitely differentiable function such that ¢ (z) = ¢ (—z) and
Y(z) =0if |z| <1 and ¢(z) = 1if |z| > 2

So we see immediately that h' too is a subspace of L!.
Moreover we have equivalence of the two norms ||f]|||pn = I|IMY £ 12 and

111+ 225 il

For instance see [61].

p .
loc*

Last but not least, we have the local Hardy spaces $
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Definition 63 (Local Hardy spaces). Let U be an open subset of R™ and let
0 < p < oo. Then a distribution f € D'(U) belongs to the local (homoge-
neous) Hardy space 9% (U) if for each compact subset K of U there is an
e > 0 such that

p
((sup sup lpx f(2)]) < o0
K N0<t<e peT

where p, has the same meaning as in the definition of the homogeneous Hardy
spaces and

T ={p e C®MR") | supp ¢ C B(0,1) and ||Vpl||o < 1}.

In other words, a distribution in S’Jfoc coincides locally with a function in $HP.

For more details about other equivalent definitions of these spaces see e.g.
[21], [45], [51] and [61].

So far we have seen substitutes for L', next let us state the definitions of
substitutes for L.

Definition 64 (BMO). Let f be a locally integrable function. Then f belongs
to BMO if the inequality

|1§,/B|f(x>—f3|d:c§A

holds for all balls B where fp = |B|™! fo dx denotes the mean value of f
over the ball B.

The smallest bound A for which the above inequality is satisfied is taken to
be the norm of f in BMO, ||f||smo-

As $P has a non-homogeneous counterpart, namely h?, also BMO has a
non-homogeneous counterpart:

Definition 65 (bmo). Let f be a locally integrable function on R™ and let Q)
be a cube in R™ and denote

1
fQ—@/Qf(l’)dx

the mean value of f with respect to Q. Then bmo consists of all f € L}, (R™)
which satisfy the following inequality

1 1
[ llomo = 1 @/Qum ~ foldz + sup @/Qum! d < 0o

lQI<1 lQ[>1
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The duality coupling of the Hardy space $' with BMO is stated in the
following theorem due to Fefferman-Stein:

Theorem 66 (Fefferman-Stein,[21]). a) Suppose f € BMO. Then the
linear functional | given as

I(g) = . f@)g(x)de, geH'

initially defined on the dense subspace of H' atoms, has a unique bounded
extension to H' and satisfies

I < ClIflBaco

b) Conversely, every continuous linear functional | on $H' can be realised
as above, with f € BMO, and with

£l a0 < Cl|
So roughly speaking (H')* = BMO.

For a proof of this result see [21] or [52].

And its counterpart in the case of non-homogeneous spaces:
Theorem 67. (/61]) (h')* = bmo

See for instance [61].

A.2 Besov and Triebel-Lizorkin spaces

Apart from these rather classical function spaces from above we shall work
with the so called Besov and Triebel-Lizorkin spaces.

A.2.1 Non-homogeneous Besov and Triebel-Lizorkin
spaces

In order to define them we have to introduce some additional notions:
Definition 68 (®(R")). Let ®(R™) be the collection of all systems ¢ =
{pi(@)} 2, C S(R™) such that

supp o C {z| [z < 2} '
supp @; C {z| 271 <z <2%'} if j=1,2,3,...,
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for every multi-index a there exists a positive number C,, such that
21| Dpi(x)| < Cy for all j =1,2,3,... and all v € R"

and

Zcpj(x) =1VreR"
=0

Remark 69.

e Note that in the above expression Y ™2 p;(z) = 1 the sum is locally
finite!

e Example of a system ¢ which belongs to ®(R"):
We start with an arbitrary C§°(R™) function ¢ which has the following
properties: ¢(z) = 1 for [z] < 1 and ¢(z) = 0 for [z] > 3. We set
polw) = B(x), ¢1(2) = U(2) = b(z), and @;(x) = 1 (277Ha), j > 2.
Then it is easy to check that this family ¢ satisfies the requirements of
our definition.
Moreover, we have 7 ¢;(z) = ¥(27"x), n > 0.
By the way, other examples of ¢ € ®, apart from this one, can be found
in [43], [61] or [15]. )

Now, we can state the definitions of the above mentioned Besov and Triebel-
Lizorkin spaces.

Definition 70 (Besov spaces and Triebel-Lizorkin spaces). Let —oo < s <
00, let 0 < g < oo and let p € O(R™).

i) If 0 < p < oo then the (non-homogeneous) Besov spaces B, ,(R?)
consist of all f € 8" such that the following inequality holds

1f1B; (R = [[27°F Lo, F119(LP (R™)) ]| < o0

i) If 0 < p < oo then the (non-homogeneous) Triebel-Lizorkin spaces
F3 o(R?) consist of all f € S" such that the following inequality holds

1 1FgR||? = |[27°F o, FfILP(R™, 19)]] < 00

i1) If p = oo then the spaces F3_ (R®) consist of all f € S such that
I{fe(z)}rey C L®(R™) such that the following holds

=Y _FloFfyinS'R")

k=0
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and
|12°% fie| L= (R™, 19)|| < oo.

Moreover we set
1 f1F5 o (R™)|[# = inf | |2°* fi L>(R", 19)]]
where the infimum is taken over all admissible representations of f.

Here F denotes the Fourier transform and

el (27 (") H—( / fulo)Pde) 5)

Ifl PR, zqu—(/ Zm 0)hd )

Recall that the spaces B, and Fj are independent of the choice of ¢ (see

[61]).

and

As a short orientation in view of other function spaces we will recall some
results concerning [y spaces (proofs can be found e.g. in [61]).

Proposition 71. (/61])

Whe = in2 fork < oo and1l <p < oo
bmo = FC?O’Q
h = Fz?,2 for 0 <p< oo

Where the norm of the space Fy is equivalent to || - ||gp = M) if
p > 1 (equivalent metric in the case p < 1), in the first two cases too, we
have equivalent norms.

Apart from this relation to well-known function spaces we recall the following
results within the framework of Besov respectively Triebel-Lizorkin spaces.
We start with a Fourier multiplier result ( see for instance [61]).

Theorem 72. ([61]) Let —0o < s < 00 and 0 < ¢ < co. Let A be either
By (R") with 0 < p < oo or F (R") with 0 < p < oo. If the natural number
N s sufficiently large, then there exists a positive number C' such that

|17 mFf | All < Clim||n]lf | Al
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holds for all infinitely differentiable functions m(x) and all f € A where

ol o
[[m||x = sup sup(1+ |z|?)2 |[Dm(z)].
|a|<N zeR™

If we want to study sequences of functions in stead of single functions, the
following assertion is quite useful (again see for instance [61]):

Theorem 73. ([61]) Let 0 < p < 00, 0 < ¢ < 0o. Let Q = {Q4},0, be a

sequence of compact subsets of R". Let moreover dy > 0 be the diameter of

Q. if r > 5+ m, then there exists a constant C' such that

|F~ My F il LP(19)]] < C sup || Mi(di-) [P o[ fel L ()]
holds for all systems { fi.}req C LP(1?) such that supp Ffi, C Qy and for all
sequences { My},—o C Fy,.
Apart from these facts, we shall also recall the elementary embedding results:

Theorem 74. ([61],[43]) Let s € R.

i) Suppose in addition 0 < go < q1 < 00 and € > 0. Then

s+e S -
By C B, if0<p<oo

P90
and
s+e S -
FM0 C le if 0 <p<oo

ii) Let 0 < ¢ < oo and 0 <p < oo. Then
B;min{nq} C inq C B;,maX{nq}'

iii) The assertion i) and ii) remain valid in the case of spaces on domains.

i) Let 0 < pg <p1 <o00,0<qg<00and —o00 < 81 < 89 <o00. Then
s . n o n
BpquCBpiq zfso—p—o—sl—p—l.

v) Let 0 < pg <p; <00, 0<qg<o00 and —oco < s; < sy <o0o. Then

n n
S0 S1 ; o o
Fpoa C Fpig if so po 1 -

and even
n

n

S S . _
Fpg,oo C Fplﬂq ifsop —— =51 — —.
Po b1
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Lat, but not least, we may mix B- and F-spaces:

vi) Let 0 < g < oo and suppose in addition that 0 < p < oo and 0 <

q,u,v < o0o. Then
S S S
Bp»u C Fp,q - Bpﬂ)

if and only if 0 < u < min(p, q) and max(p,q) < v < co.

vii) Let 0 < py < p < p1 < oo and suppose
n n n

So—— =8S—— =8 — —.
Po p P1

Then
B C F;’q C Bt

Ppo,u p1,v

if and only if 0 <u <p <wv < oo.

For instance see [61] and [43].
On a more advanced level we have the following embedding assertion

Theorem 75. ([47])

i) Let s € R, 0 < p < oo and 0 < g < oo. Then the following assertions
are equivalent
a) Fj, CL>®
b) F,,CC
¢)

n n
either s > — ors=— and 0 <p < 1.
p p

ii) Let s e R, 0 < p < oo and 0 < g < oo. Then the following assertions
are equivalent
a) By, C L™
b) By, CC
c)

n n
either s > — ors = —and0 < qg < 1.
p p
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A.2.2 Besov and Triebel-Lizorkin spaces on domains

Instead of the whole space R™ one can also consider bounded open domains
2 C R™. In this latter case we have the following definitions.

Definition 76 (Besov and Triebel-Lizorkin spaces on domains). Let Q be
a bounded open C*-domain C R™. Moreover let —oco < s < oo and let
0<qg<oo.

i) If 0 < p < oo then the (non-homogeneous) Besov spaces B (§2) con-
sist of all f € D'(Q) such that 3g € B, (R") with glo = f and we
set

1By ()] = inf [|g] B, ,(R™)]]
where the infimum is taken over all admissible representations of f.

i) If 0 < p < oo then the (non-homogeneous) Triebel-Lizorkin spaces
F3 (82) consist of all f € D'(Q) such that 3g € F; (R") with gl = f
and we set

LF1E5 o (]| = inf [[g]F7, (R™)]]
where the infimum is taken over all admissible representations of f.

Remark 77. There is no difficulty to extend the definition of F; (£2) to the
cases p = oo and 0 < g < oo. We just have to start with the definition of
the spaces I, (R").

Concerning the relation between spaces on domains and spaces on the whole
space, some of the most important facts are summarised in the following
theorem.

Theorem 78. ([61]) Let 2 be a bounded C*°-domain C R™.

i) Let 0 < pp < 00, 0 < p < 00,0 < q <o00,0< ¢ < o0 and
—0 < 81 < 89 < 00. Then

S s . n n
Bpg,qo(Q) C Bpi,qo“}) if so — p—o =81 — p—l

and

B® () C B, (Q) ifso— > s — 2

Po,q0 P1,91
Do D1

ii) Let 0 < pp < 00, 0 < p; < 00, 0 < qp < 00,0 < ¢ < 0 and
—00 < §1 < 89 < 0. Then

Fo (Q) CF,(Q) if sg— — > 83 — —

Po,90 P1,91
Do D1



APPENDIX A. DEFINITIONS AND STANDARD RESULTS 102

iii) Let —oo < s < 0o. Then

B () C B (Q)if0<p <py<ooandd<qg< oo

Ppo.q p1,9

and

F> () CFS (Q)if0<p <py<ooand0 < q< oo

po,q P1,9

For a proof of this theorem, see [61], p.197.

A.2.3 Local Besov and Treibel-Lizorkin spaces

Next, we look at the following local spaces:

Definition 79 (Local Besov and Triebel-Lizorkin spaces). Let —oo < s < 00
and let 0 < g < o0.

i) If 0 < p < oo then the local (non-homogeneous) Besov spaces B3, 1.
consist of all f € D'(R™) such that for all bounded open C'*-domains
Q the restriction of f to Q, fla, belongs to B, ().

ii) If 0 < p < oo then the local (non-homogeneous) Triebel-Lizorkin spaces
F}, qioc consist of all f € D'(R™) such that for all bounded open C*-
domains Q the restriction of f to 2, fla, belongs to F; ().

In other words, elements in a local Besov or Triebel-Lizorkin space coincide
locally with an element of the corresponding space on the whole space R™.

A.2.4 Homogeneous Besov and Triebel-Lizorkin spaces

Since it turned out that the homogeneous counterparts of the spaces B, , and
F; , are as well involved in our studies, let us recall their definitions in order
to facilitate understanding:

First of all, we need an appropriate extension of &', given by the following
definition.

Definition 80 (Z(R") and Z'(R™)). Z(R") is defined to be the set of all
v € S(R™) such that

(DF)(0) =0 for every multi-index .
And Z'(R™) is the topological dual of Z(R™).

Once we have this, we can define the homogeneous counterpart of ®(R"):
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Definition 81 (@(R“)) Let (iJ(]R“) be the collection of all systems @ =
{pj(@)}2___ C S(R™) such that

j=—o00
supp p; C {x| 2071 < x| < 2j+1} if 7 is an integer,
for every multi-index « there exists a positive number C,, such that

2jla|’Da%(g;)| < C, for all integers j and all x € R™

and
o0

Z pi(r) =1Ve e R"\ {0}.

j=—00
Remark 82.
i) Note that every ¢ € ®(R") generates a ¢ € ®(R") by setting

0
¢o = Z%’

j==o0

o = @pfork >1.

ii) Again, let us give an example of such a partition of unity: We start with
a function ¢ € S such that supp ¥ C {z |1 < |z| <4} and (z) =1
on {z |1 < |z| <2}. If we define

B 77Z}(Q—kﬂx)
@k(Q?) - Zjezw(2jx)

then {p;}2__ € ®(R").

= (27" keZ

iii) Another possibility to construct a system {p;}~__ € ®(R™) arises
from the non-homogeneous example we gave in remark 69: We start
with the same 1) as before and set

w;(x) =2 7x) — (277 2) j € Z.

It is not difficult to check that this really defines a system {¢;}>2 in®(R")
and that once we define ¢(x) := @o(x) we have that p; = ¢(277z)
Moreover, observe that

Y ek=v0272) jeL

k<j

See also [55].
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So finally we are able to define the homogeneous counterparts of the spaces
B, , and F
Definition 83 (Homogeneous Besov and Triebel-Lizorkin spaces). Let —oo <

5 < 00, let 0 < ¢ < oo and let p € B(R™).

i) If 0 < p < oo then the homogeneous Besov spaces B;q(R“) consist of
all f € Z'(R™) such that the following inequality holds

oo 1

715,411 = ( ) stqHFlsDij!Lp(R”)Hq>E < 00

j=—o0

with the necessary modification in the case ¢ = oo.

i) If 0 < p < oo then the homogeneous Triebel-Lizorkin spaces F;’q(R“)
consist of all f € Z'(R™) such that the following inequality holds

<

Iz R =][( 3 2 E e o) e

with the necessary modification in the case ¢ = oo.

iii) If p = o0 and 1 < q < oo then the spaces onﬁq(R“) consist of all
€ Z'(R") such that 3{f(x)},— . C L®(R™) such that the following
holds

=Y FlouFfyin Z'(R")
k=—o00

and

‘<oo.

(3 #ier) =)

Again, remember that the spaces B;’q and Fz‘f’q do not depend of the choice
of ¢.

At this stage, let us recall the most important facts about these homogeneous
function spaces.

Theorem 84. ([61])
t) . .
I/V"”’p:F;2 fork <ooand1l <p< oo

1.e.

Y DI RY| = [If W™ (R

|a)|=m

is an equivalent norm on F;E(R”) if k <ooand1l<p < oo.
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ii)
ﬁp:F£2:hp:F£2 for1l <p < oo.
For a proof and further details see [61], chapter 5, in particular p. 242. See
also [61], p. 88.
Last, but not least, we have the following relation between homogeneous and

non-homogeneous Besov respectively Triebel-Lizorkin spaces (see for instance
[61] vol. II):

Proposition 85. ([61]) Let s > nmax(O,% —1). Then
F,=L"NE;,
and

[1£11lp + 115

15 an equivalent norm to
S
FIED ol
The same conclusions hold also for Besov spaces.

Related to that, we know the following isomorphism between different ho-
mogeneous Besov respectively Triebel-Lizorkin spaces.

Proposition 86. (/61]) The mapping f — I, f, defined es
Lf()=F N E°Ff), o €R, feZ,

y y y ’ S ’ S—O0 - S - S—0
is isomorphic from FJ —onto F} ° and from By , onto B, °.

A.3 Besov-Morrey spaces

In stead of combining LP-norms ans [9-norm one can also combine Morrey-
(respectively Morrey-Campanato-) norms with [%-norms. This idea was first
introduced and applied by Kozono and Yamazaki in [29].

In order to make the whole notation clear and to avoid misunderstanding we
will recall some definitions.

We start with the definition of Morrey spaces

Definition 87 (Morrey spaces). Let 1 < ¢ < p < 0.
i) The Morrey spaces ME(R®) consist of all f € Lj, (R") such that

loc

|| fIMP]| = sup sup R™P~"/4|| f|L9(B(z0, R))|| < o0

zoER™ R>0
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i) The local Morrey spaces MB(R™) consist of all f € Lj, (R") such that

IFIMGI| = sup Sule”/”_"/qllfqu(B(wo,R))II <0

zoER™ O<R<

where B(xg, R) denotes the closed ball in R™ with centre xo and radius
R.

Note that it is easy to see that the spaces M? and M} coincide on compactly
supported functions.

Apart from these spaces of regular distributions, i.e. function belonging to
Li,., in the case ¢ = 1 we are even allowed to look at measures in stead of

functions. More precisely we have the following measure spaces of Morrey
type. They will become useful later on in a rather technical context.

Definition 88 (Measure spaces of Morrey type). Let 1 < p < oc.

i) The measure spaces of Morrey type MP(R™) = MP consist of all Radon
measures o such that

|| MP|| = sup sup R"P~"|p|(B(zo, R)) < 0.

zoER™ R>0

ii) The local measure spaces of Morrey type Mq(R™) = MP consist of all
Radon measures p such that

M|l = sup OS%glR”/p‘”lul(B(xo,R)) < o0
2o €ER™ 0<R<

where as above B(xo, R) denotes the closed ball in R™ with centre x
and radius R.

Remember that all the spaces we have seen so far, i. e. M?, MP, MP and M?
are Banach spaces with the norms indicated before. Moreover, M} and M7
can be considered as closed subspaces of M? and MP respectively, consisting
of all those measures which are absolutely continuous with respect to the
Lebesgue measure.

For details, see e.g. [29].

Once we have the above definition of Morrey spaces (of regular distributions),
we now define the Besov-Morrey spaces in the same way as we constructed
the Besov spaces, of course with the necessary changes.

Definition 89 (Besov-Morrey spaces). Let 1 < g <p< oo, 1 <r < oo and
s eR.
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i) Let ¢ € ®(R™). The homogeneous Besov-Morrey spaces N} qr consist
of all f € Z' such that

o0 1

17N, B = (30 27 e, FAMIEDI) < .

j=—o0

S

p.qr CONSist

ii) Let p € ®(R™). The inhomogeneous Besov-Morrey spaces N
of all f € §' such that

1Nz (RONF = (02 1F o FIMERY| ) < 0.
j=0

Note that since LP(R") = M&(R™) the framework of the N7 (R™) can be

pian
seen as a generalisation of the framework of the homogeneous Besov spaces.

In our further work we will crucially use still another variant of spaces which
are defined via Paley-Littlewood decomposition. We will use the decomposi-
tion into frequencies of positive power but measure the single contributions
in a homogeneous Morrey norm:

Definition 90 (The spaces B} » ). i) Let 1 <g<p<o0o,1<r < o0
and s € R. Let p € ®(R"). The spaces BY p . consist of all f € &
qQ»
such that

1

/1B ROIIF = (3o 2 |F oy FAMURYI) < oo,

J=0

i) The spaces B p (2) where Q is a bounded domain in R consist of all
q»
€ B . which in addition have compact support contained in €.
Myq,r

Remark 91.

i) Again, as in the case of Besov and Triebel-Likorkin spaces, all the
spaces defined above do not depend on the choice of ¢.

ii) Previously we mentioned that our interest in these latter spaces was
motivated by the work of Riviere and Struwe (see [43]) let us say a few
words about this. In [43] the authors used the homogeneous Morrey

2n-2 .
space L™ with norm

1
||u||i§,n_z = sup sup( n2/ |Vu|2>.
zo€R™ >0 \T B—r(zo)
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Note that u € L™ is equivalent to the fact that for all radii r > 0
and all xqg € R™ we have the inequality

w3
NS

HVUHLQ(BT(IO)) S C?“(n72)/p = C?‘

but this latter estimate is again equivalent to the fact that Vu € M3.
Finally we remember that M} = /\/;?7272 (see for instance [32]) and note
that Vu € N}, , is equivalent to u € N, ,, since for all s - even for
the negative ones - we have the equivalence 2°||u®||pm =~ ||[(Vu)*||mgp
because we always avoid the origin in the Fourier space and also near
the origin work with annuli with radii r ~ 2°.

Before we continue, let us state a few facts concerning the spaces Bj ;» | which
q»
are interesting and important.

Lemma 92. i) The spaces B, are complete for all possible choices of
indexes.

ii) a) Let s >0,1<qg<p<oo,1<r<ooand\>0. Then
L F ) B || < CX7# sup {1, A} || f[ B, ||
b) Let s=0,1<q¢g<p<oo,1<r<ooand\>0. Then

1fA)B Il < CA75 (14 [log A)*[[ f| Byl

where ] ] ]
a=—ifA>1 anda=1--=—f0<A <1
r r T

The first assertion is obtained by the same proof as the corresponding claim
for the spaces N, in [29].
The second fact is a variation of a well known proof given in [10].

At this stage, let us recall the the following results of [29]:

Proposition 93. (/29]) There exists a positive constant C' such that the
following holds. Let m be a real number, and let 7 be an integer. Suppose that
P(&) is a C™-function on D;_yUD;UD —j + 1 - where D; is a annulus with
radii proportional to 27 - such that the estimate |(91°1P/0¢*)(€)| < A2(m=laDi
holds for £ € D —j —1U D; U Djyq with some constant A for every o € N*
satisfying o] < [n/2] + 1. Suppose further that p and q satisfy 1 < q <
poo. Then, for every u € MP [resp.u € M{I’/ such that supp Fu C Dj;, we
have F~1(P(§)Fu) € MP and ||F~(P(&)Fu)|MP|| < CA2™|[u| MP||. [resp.
FHP(&)Fu) € ME and ||F~(P(§)Fu)| MP|| < CA2™ ||u| MP]|.]
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Proposition 94. (/29]) There exists a positive constant C' such that the
following holds. Suppose that P(§) is a C*®-function on B4(0) such that the
estimate |(01%1P/0£)(€)| < A holds for & € B4(0) with some constant A for
every o € N satisfying |a| < [n/2] + 1. Suppose further that p and q satisfy
1 <q<p<oo. Then, for everyu € M} [resp.u € MP] such that supp Fu C
By (0), we have F~H(P(&)Fu) € MP and ||F~(P(&)Fu)|MP|| < CAlju|MP||.
[resp. FH(P(§)Fu) € Mp and ||F~1(P(§) Fu)| Mil| < CA||lul M|/

For further information about the Besov-Morrey spaces, see [29], [31] and
(32].

A natural question that arises when we work in function spaces different
from LP- spaces or Sobolev-spaces is to ask for an analogy to the well-known
Sobolev embedding results.

In the framework of Morrey-spaces there is the following result of Campanato
(see [14])

Theorem 95. ([14]) Let Q be a ball in R™ and assume that uw € W¥, with
1<qg<p<oo. Then it holds

i) If & >k, then u € M=% where

B< B = il >k
p
B<fB = oo, if 2=k
p

and

pen—kg-"0
p

ii) If there exists h, 1 < h < k such that
h> "
p

then we have

S sup Dl < Cllully
rj=k—h !

In addition, we have the following refinement due to Adams (see [3]) at our
disposal

Theorem 96. (/3]) Let k > 1 be a natural number and assume that V*u €
M7(Q) where Q@ CR™ and 1 < g < 1. Then it holds

uc Mn;qkp.

n—kp
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In the larger context of the Besov-Morrey-spaces in Kozono/Yamazaki the
following generalisation is presented:

Theorem 97. (/29])

i) Let p,q and s be real numbers such that 1 < q < p < o0, and let
r € [1,00]. Then we have the following continuous embeddings: N3 .. C

p’q7’r‘
B and N3, € Bi”.
ii) For every 6 € (0,1) the following embeddings hold: N3, . C N;/_@"q(/l;f)/p
s s—n(1—0/p
and ./\/pvqﬂ‘ C p/9,q/9,7’ :
The last assertion of Kozono/Yamazaki we would like to quote is the follow-
ing:

Lemma 98. (/29]) Let v be a Radon measure on R"™ such that its total
vartation on R™ is A < oo. Ten we have the following : Suppose that 1 <
q < p < oo. Then, for every u € ME, [resp. u € MP] we have v xu € MP
and [[v+u|ME|| < Al|u|ME|. [resp. veu € My and ||vxulME]| < Allu| M|
/. The same conclusions hold also for MP [resp. MP].

Furthermore we have the following embedding result which relates the spaces
B?\/tg,r to the Morrey spaces with the same indexes respectively, similar for
the spaces N?

p7q7r :

A.4 Spaces involving Choquet integrals

In the preceding section devoted to Hardy spaces and also in the sections
about Besov- and Triebel-Lizorkin spaces we saw some duality results, in the
sense that for a given function space we were able to give the description
of its dual spaces - under some conditions. If we ask ourselves the same
question in the framework of Morrey-Besov spaces, the situation is much more
complicated. Nevertheless, we shall make use of such a result. More precisely
we will use a certain description of the predual spaces of M!. Before we can
state this assertion we have to introduce some function spaces involving the
so-called Choquet integral. A general reference for this section is [1] and the
references given therein.

We start with the notion of Hausdorff capacity:

Definition 99 (Hausdorff capacity). Let E be a subset of R™ and let {B;}, j =
1,2,... be a cover of E, i.e. {B;} is a countable collection of open balls B;
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with radius r; such that E C U;B;j. Then we define the Hausdorff capacity
of E of dimension d, 0 < d <n to be the following quantity

HY(E) =inf ) " rf
J

where the infimum is taken over all possible covers of E.

Remark 100. The name capacity may lead to confusion. Here we use this
expression in the sense of N. Meyers. See [33], page 257.

Once we have this capacity, we can pass to the Choquet integral of ¢ €
Co(Rn)+Z

Definition 101 (Choquet integral and L*(H2)). Let ¢ € Co(R™)*. Then
the Choquet integral of ¢ with respect to the Hausdorff capacity HZ is
defined to be the following Riemann integral:

/¢ngoz/0mHgo[¢>A] dA.

The space LY(HL) is now the completion of Co(R™) under the functional
[ ¢l dHE,.

Two important facts about L!(H2) are summarised below, again for instance
see [1] and also the references given there.

Remark 102.

e L'(HZ) can also be characterised to be the space of all H% -quasi con-
tinuous functions ¢ which satisfy [|¢| dHL < oo, i.e. for all e > 0
there exists an open set G such that H% [G] < ¢ and that ¢ restricted
to the complement of GG is continuous there.

e One can show that L'(H%) is a quasi-Banach space with respect to the
quasi-norm [ |¢| dHZ.

Now, we can state the duality result we mentioned earlier. A proof of this
assertion is given in [1], but take care of the notation which differs from our
notation!

Proposition 103. (/1)) We have (L'(HZ))* = M#=2 and in particular the
estimate

\ / " du‘ < el gy 1l o

holds.
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Remark 104. The above proposition is just a spacial case of a more general
result which involves also spaces LP(HY), see for instance [2].

Before ending this section we will state some useful remarks for later appli-
cations.

Remark 105.

e Observe that MP C &’ (in particular for p = -~). In order to verify

n—d/’
this, note that M? Cc NJ, C & Let p € MP and let as usual
© € ¢(R™) then we have

it Npyooll = sup |[@r = p|MY||
keN

= sup||@x * p|MP||
keN

note that @y x p € C™ C L, since u € D’
and @y * 1 can be seen as a measure

sup ||@|[1] || M|
keN

IN

because of lemma 98
Cl|p|MP]|

< o0

IN

according to our hypothesis.

Once we have this, we apply the continuous embedding of N}glm into
S’ (see e.g. [32]) and conclude that actually M? C §'.

Note also that S C L'(HY)

e Using the duality asserted above, we can show that L'(HZ) C &"
We start with f € C3°(R™). Since f € L™ it is easy to check that
feMp 1 <q<p<oo, with [|[f[MP[| = [|f[|cc. Moreover, f even
belongs to M?. In order to establish this, it remains to show that there
is a constant C', independent on f, such that Vz € R™ and for 1 <r

L@y < Crar.

In fact, it holds Vx € R™ and Vr > 1

fllor @y < |IfIh
[ fllira™>

since due to the choice of p and ¢ we have

n n
———>0.

qg p

IN
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If we put together all this information we find

AIMEN < [ flloo + 11111

Now, recall that the duality between L'(H<) and M= is given by

< IU/JU‘ >(L1(Hd )) M" n—d Ll(Hd) /Ud:u

where v € L'(H%) and p € M7-a.
In a next step we define the action of u € L'(Hy,) on f € C5° as follows

<u fEpop=< fiu> ) mmn g

Last, but not least, we observe that for ¢ € § we have

[llloe +[lells < C)llells-
This finally leads to the conclusion that in fact, L'(H2) C S’

This last remark enables us to use the above introduced L'(H% )-quasi norm
to construct - in analogy to the case of Besov- or Besov-Morrey-spaces - a
new space of functions.

Definition 106 (Besov-Choquet spaces). Let p € ®(R™).
We say that f belongs to By ga ) o, of 3{fu(2)};2y C L'(H,) such that the
following holds

F=Y_ F'ouFf
k=0

and
Sgpl|fk|Ll(H§o)|| < oo.

Moreover we set

1£1BEs 1o, ||=inf81;p||fk\L1(H§o)||

where the infimum is taken over all admissible representations of f.
Moreover, we denote by bLl (H4) 00 the closure of S under the construction
explained above.

Remark 107. In complete analogy to the construction of the Besov spaces
(respectively the Besov-Morrey-spaces) one could also construct new spaces
if we replace the Lebesgue LP-norms (respectively the Morrey-norms) by
LP(HY)-quasi-norms.
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A.5 Lorentz spaces

In this section we introduce still another class of function spaces.
As in the case of Besov spaces we have to start with some preliminary con-
cepts.

Definition 108 (Non-increasing rearrangement). Let f: Q C R* — R be a
measurable function. The non-increasing rearrangement of |f| on [0, |Q|) is
the unique function, denoted by £*, from [0, |2]) to R which is non-increasing
and such that

[{z € Q[ |f(z)| = s}|=[{t € (0,[Q] f*(t) = s}].
Moreover we set

1 t
£ (t) = —/ f*(s) ds.
t Jo
Once we have this we can proceed to the definition of Lorentz spaces.

Definition 109 (The spaces LP7(€; R)). Let Q be an open subset of R™, p €
[1,00], ¢ € [1,00|. The Lorentz space LP4(Q; R) is the set of all measurable
functions f : Q2 — R such that

s dhh
o= [ [ @ rwrT] <oc i1 <g<oc it <p <o
0

or
| flp.oo = supt%f*(t) < o0, if1 <p<ooandq= .
>0

Moreover we define

1

1 dt1; .
o= [ [ @ @] 1< 0 <0 amd1 <p <o

or
I fllpoo = supt%f**(t), if 1 <p<ooandq= .
>0

Both quantities |f|,, and ||f||,, are important and useful. This fact is
underlined by the following theorem.

Theorem 110. (/68]) If f € LM, 1 < p < oo, then 3C > 0 such that

1
5’f|p,q < Hf“p,q < C|f|p,q'
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For instance see [53] and [68].

At this stage it is very natural to ask in how far the well known LP spaces
are related to the new LP¢ spaces. The answer is the following

Theorem 111. (/53]) We have
L?P = LPP for1 <p< oo

and
(LP9.|] - |],.,q) %5 @ Banach space for 1 < p < oo, 1 < g < 0.

Again, proofs can be found in [53].

Apart from that, the following theorem summarises the most important prop-
erties of LP? spaces - among them some similarities between the LP spaces
and the LP? spaces:

Theorem 112. ([68] et al.)

i) Assume that f € LPY% and g € LP>% then f-g € LP9 where

i) (LP9)* = [P for1 < p < oo and 1 < q < 0o where as usual %—l—ﬁ =1
and % + % =1.

iii) LPt C LPe if g < go.
i) o € L™ (R).
See for instance [68], [53] and [30], [37].

Last but not least we would like to point out the connection with the distri-
bution function A:

Definition 113 (Distribution function). Let g(x) be defined on R™. The
distribution function N «) of |g| is defined to be the measure of the set where
lg] > a, i. e.

Ma) = [{z | g(x)] > a}|.

Then we have
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Lemma 114. In the case L*' we have

1 Fllaa = 21l :4/0 Ll [f(@)] > AY]F d

Proof of lemma 11/:
This lemma is a conclusion of these two calculations:

1 dt

M = [ r0F

00 1 t
= / t2— fr(s) ds dt
0 t

tJo
o0 3 t
= / t72 [ f*(s)dsdt
0 0
— 2/ tEfA(t) dt
0
- 2|f|2,1

where in the second last step we integrated by parts.

And
| eiroe = [ ro%
= z/ooof*(zﬂ) du
= 2 [ Hul £t > A ax
= 2 [ £ > 2
= 2 [ 14al f@) > N} I

where the second last step holds because of the fact that f* is non-increasing
and the last step holds because of the fact that f and f* are equimeasurable.
O

Moreover we have that - except at points where either function is discontin-
uous ( and the other is constant on an interval ) - the distribution function
A and f* are inverse to each other. This fact is really well explained in [4],
p. 222, and is exploited in the next proposition.

Proposition 115. Let Q C R™ be bounded. Then
L3®(Q) C LP(Q) = LPP(Q) Vp < 2.
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Proof of proposition 115:
Since we are on a bounded domain, the distribution function A is bounded
from above by |2|. But this implies that

([ erard) = ( /OM'(tif*(t))p%)’l’-

( In one dimension the inverse function is the reflection at the line z = y, so
f*(t) does not transgress t = |Q]. )

Next remember that for 1 < p < oo |f|,, and ||f]||,, are equivalent. So it
suffices to show that for every f € L*>®(Q) |f],, < oc:

oo = ([ @ rore)

where the third last step holds because

[flase = SUpt2 f*(t) < 00 = f*(t) < |flooct 2 VE > 0.
t>0

The last step holds because of the fact that due to p < 2 we have —% > —1

which gives us the last inequality since we integrate only between zero and
2.

O

For further details about the LP? spaces see [53], [68], [4] or for those who
are especially interested in interpolation theory: [30], [37] and [53].



Appendix B

Two alternative approaches
towards Wente’s lemma

B.1 Application of the notion of paraprod-
ucts towards Wente’s result

In this section we will give an alternative proof of the fact that whenever
we start with two functions a € WH(R") and b € W1, p'(R") where p > 1
and 1p + :z% = 1 then and two-dimensional determinant belongs not only
to L'(R") but even to the smaller Hardy space F7,(R"). This alternative
approach can be essentially found in [58], but we prefer to present it here
in a slightly different manner, since this was the starting point towards the
n-dimensional generalisation we present in the first part.

For the sake of simplicity, in what follows we will use the abbreviation a, for
0
&CL.
In general, for a given function u € W? by Holder’s inequality we can only
obtain the a priori information that the product of two first order derivatives
Ug,U,; belongs to L%. Ifp/2 > 1 then L% () embeds continuously into FP5(Q)
for any bounded open C*°-domain 2 (see also theorem 78). So we conclude
that actually ug,u,, belongs to FYy,,,, i.e. locally our product coincides with
a distribution in FY, = b'.
Our goal here is to prove a global result, namely the following theorem.
Theorem 116. Let a € W'?(R") and b € W' (R") where

1

1
-+ —=1andp>1.
p D

Then
T (ag, by), m3(agz, by), m1(ay, by) and m3(ay, by) € FRQ(R”) = H'(R")

118
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and
oo s+1 ) ] )
D> abby —ayhs € BY(RY) = FY (R") € FD,(R") = H'(R™)
s=0 t=s—1

where x = z; with i € {1,...,n} and y = z; with j € {1,...,n}.

As a warm up we shall first of all prove the following result:

Proposition 117. Let a € W'P(R") and b € W' (R™) where

1 1
—+—=1andp>1
p D

Then
m1(ay, by), m3(ag, by), m1(ay, by) and m3(ay, b,) € FRQ(R") = p'(R")

and

co s+1
D) dbby —alh; € BY(R") = F (R™) C F,(R") = b'(R")
s=0 t=s—1

where x = z; with i € {1,...,n} and y = z; with j € {1,...,n}.

Recall that WW*?(R") is the closure of C§° in the norm

- Mlvirse = 22)5=k [IV? - || and that the notation ”C” stand for a continuous
embedding.

Note that using a result of Coifman, Lions, Meyer and Semmes (see [16]) one
can immediately find a similar result namely that

azb, — ayb, € FYy = H'(R")
whenever a € W5 and b € W™ where %+I% =1withp>1and k,m > 1.

Remark 118.

e Note that since on any bounded domain €2 the norms

- wer = 2205 <i IVl and [|-[[rs = 22042k [[V*+]|2e are equivalent
our a priori estimate reduces to

Hamby - aybw|F10,2|| < CHVGHPHVbHP’

if both a and b have bounded support.



APPENDIX B. ALTERNATIVE APPROACHES 120

e Theorem 78 below asserts that a local improvement is possible:

‘]ij(a7 b) S B?,l;loc(Rn) - Flo,l;loc'

Proof of proposition 117:

First of all, let us point out the two important facts we have, namely that
the quantity we want to study is a determinant, which gives us a certain
(algebraic) structure, and moreover that the functions involved in this deter-
minant are (weak) derivatives.

We start with a system ¢ = {p;(z)}2, € ®(R") constructed as in the
example of remark 69 and define fi(x) = F~1(p,; Ff)(z).

The fact that 372 f7 = f in S'(R") leads us to the notion of the product
of tempered distributions.

Definition 119 (Product of two tempered distributions). Let f, g be two
tempered distributions. The product of f and g is given by

J J
frg=1m (3 7) (X 4)
! i=0 1=0
whenever the right hand side of the above equation exists in S’'(R™).

The following decomposition into so-called paraproducts will turn out to be
helpful.

Definition 120 (Paraproducts). Let 11,15 € S(R™) be two functions sup-
ported around the origin.
We consider the following bowline map

m(f, 9)( ZF (277 ) Ff)(@)F " (¥a(277 ) Fg)(2)

where f,g € §'(R™).
Operators of this type are called paraproducts or paramultiplication op-
erators.
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We use the following paraproducts:

Wl(fag) = Z flgk

7r3(fag) = ZZflgk

=2 k=0

= Y F @ FHF Hpol27H2) Fy)

where f' =0 for 1 < —1 and similarly for g.

The reason why we work with these paraproduct is the following:

Assume that m1(f,g), m2(f,g) and 73(f, g) exist, moreover we assume that
Je A}, andge A2 where A denotes a Besov or a Triebel-Lizorkin
space. Then the following computations show that in fact we can control

also the product f - g.

mi(f,9) + m(f, 9) + 7m3(f, 9) |

7 k41 J

— lim iZflg’Ur hmz g+ lim ZZflgk
]_’OOleo k=0 I=k—1 1=2 k=0

k+1 J

J
fzgk+z Z fzgk+zzflgk Fitly >

k=2 1=0 k=0 l=k— =2 k=0

= lim

J—oo
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where in the second step we used the fact that f/*1¢g/ — 0in S’
First of all, we note that

[[20F05 7], < CIFH A,
127729 |lp, < Cllg’ A7 41

Then we have for any test function ¢ € S

< fj“gj,qb > ‘ — ‘/fj“gjgb‘
S
= /gl
< |20 (127520 ||, 277 )| s

P1P2—P2—P1
because of Holder’s inequality
200 fEY |y 1272 [y - (I _para
P1P2—P2—P1
due to the necessary condition s; + s9 > 0

IN

( see proposition below )
< AR G 1A ol N1l nare

P1,q1 P2,92

pP1P2—P27P1
— 0.

The last step in the above calculation holds because from the definition of the
Besov spaces and the Triebel-Lizorkin spaces we immediately deduce that

Hfj\AZi,qu — 0asj — oo.

Proposition 121. (/43]) Assume that we have

S1 52 S
. —
A A A7,

P1,91 Pp2,q2

where Ay . = By . witha € R, 0 < b,c < 00 or
Ap . =F . witha €R, 0 <b<o0oand0<c < oo.
This implies

Z) 81+8220
i) sl—pﬂlZs—

iii) s1+ s > o+

SIE

o S1 o _ ﬁ
iv) Apl’q1 — L, s0 s1 - > 0.
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For instance see [43], p. 160/161.
According to the above introduced decomposition into paraproducts, in what
follows we will analyse

oo s+1

m(ay, by) , m(ay, by) ,ms(az, by) , ms(ay,,b,) and Z Z ayby —aybi. (B.1)

s=0 t=s—1

Note that in stead of my(ay, b,) respectively ma(ay, b,) we will study
SNt albs — albs because we want to take into account cancellation
phenomenal

We start with the following observation concerning the supports (and think
of o = {p; (x)}jio € ®(R™) as given in the example in remark 69):

We have
-2

-2
F(Yaty) = F(F (X wiFa) 7 (@iF,)
=0 1=0

which implies that

-2 12
supp .7:< Z aib;) C supp Z i + supp ¢
i=0 =0

since we have convolutive sets ( see for instance [8], p. 132 ), and after a
short and straightforward computation we have

12
supp ]-"(Za;b;) c{¢]|27? <jg <2 forl > 2. (B.2)
i=0

Mutatis mutandis we have

I+1

supp f( Z aibé) c{¢| ¢l <5 2"} forl > 0. (B.3)

i=l—1

So for each term in (B.1) we have one of the two estimates concerning the
supports.
The following analysis of the terms appearing in (B.1) is splitted into two

cases: In the first one we discuss terms of the form 3720, S22 a,b; (note the

1
0 s+ (lt bs_

symmetry in 7 and 73| ) in the second one we treat Y 7> " | aby

tps
a, b

Analysis of terms of the form >, S *2 alb;

The idea is to use the following results
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Definition 122 (B(R")). Let 0 < p < co. BP(R™) is the set of all sequences
¢ with the following properties. ¢ = {cy}re, i a sequence of elements ¢ €

S'(R™) N LP(R™) such that

supp Feo C {E | €] <2}

and
supp Fep C {& |2 <) <21 fork > 1

Proposition 123. ([43]) Let s € R and suppose ¢ € BP(R™).

i) Let 0 < p < oo and 0 < q < 0.
If |1272¢j| LP(R™, 19)|| = A < oo, then the series ) " c; converge in
S'(R") to a limit f € F; (R"), and the estimate ||f|F,; (R")|| < CA
takes place with some constant C' independent of c.

ii) Let 0 <p < oo and 0 < g < oo.
If ||27°¢[19(LP(R™))|| = A < oo, then the series Y 2 c; converge in
S'(R™) to a limit f € B, (R"), and the estimate ||f|B, (R")|| < CA
takes place with some constant C' independent of b.

Remark 124. If one goes carefully over the proof of proposition 123 (see
e.g. [43], p. 59) one sees that the assertion still holds if we replace the
assumption on the supports by the following one

supp Fby C {& | [§] < A2}

and
supp Fb, C {&| B2" ! < [¢| < €281} for k > 1

where A, B and C' are positive constants.

This remark enables us to work directly with the sequence ¢, = Zf:_oQ atzb’;.
Otherwise we had to modify it (see Appendix).

Note that once we have these classes BP(R"™) they are useful in view of the
following alternative characterisation of Besov and Triebel-Lizorkin spaces
(see e.g. [61]).

Theorem 125. ([61]) Let 0 < ¢ < o0 and s € R. If0 < p < oo, then
B; (R™) consist of all f € S" such that 3{ fx(x)},—y C BP(R") such that the
following holds

=Y FloFfyinS'(R")

k=0
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and
|12 fo 14 (LP(R™)]| < oc.

Moreover
inf [|2°F fi.[17(LP (R™)]]

is an equivalent (quasi-) norm in By (B"), where the infimum is taken over
all admissible representations of f. For the Triebel-Lizorkin the same asser-
tion holds as long as 0 < p < co.

Lemma 126. ([43])
i) We have

HSgIg\Zf"\ [LP(RM)]] < Ol f 1 (R™)]]
S=Y =0
for all f € F)5(R™) if p < co. In the case p = 0o we have
||Sl>lg|2fi| [L=(R™)|| < ClIFIL= (R
=2V =0
for all f € L>*(R").
i) Let s < 0. We have
!
121D 11 ILPR 1] < C[f1 g (RO = [[27 |27 (R, 19))|
i=0
forall f € F; (R") if p < oo.
iii) Let s < 0. We have
121 1 E(LPRM)I| < Ol fIBj (R = [[27° f714(LP (R™)|
=0

for all f € By (R").

All these results can be found in [43].
In view of proposition 123 it remains to show that ||c;, | L*(I?)|] < oo:

First note that sup, | SO al| € L. This holds since a, € LP = F, which

T

together with lemma 126 gives that ||sup;s | Skl ||y < Cllag|l, < co.
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Apart from that we have that [|(32.7 (b)) )2l = by | E5 Sl < Cllby| |-

So we can estimate

lew | Z2A] = 10 ()2
oo k=2
= 100" db»z |l
k=0 t=0
< HSHPIZ%\Z HIN
= t=0 k=0

< Cllazllp [[by]]y

where in the last step we used Holder’s inequality.

So summarised we have the following estimate for 3°°°, 375" 2 ! b

t=0 z"y
0o 2 00
1Y) dibillpw =ClIY
s=2 0 s=2

=92 t= =2 t=

S— S—

2

apbs | FY,|| < Cllex | L) < Cllagll, [[by]p-
0
m3(ay, by) m(ay,b,) and ms(a,,b,) can be estimated in exactly the same way.

Remark 127. In the derivation of the estimates for m; and 73 we only used
the fact that a, € L = FO2 and b, € LY = FO, 2+ At this stage one may ask
whether it is possible to start Wlth the assumptlon that a, € FﬁQ = h! and
b, € FC?O,Q = bmo. But unfortunately the space of (pointwise) multipliers of
FY,, denoted by M(FY,) is smaller than bmo. In fact we have

M(me) = M(hl) = BMOlogflt N LOO7
see for instance [43].

Analysis of >, st atps — a, b,

tslmy

Before we come to the actual estimate of the term )"~ :Jrsl L abby —alb;
let us state and recall some results we will use.

First of all remember that we have (B} ,)* = BY, . (for instance see [61] or
[43]).

The other results are summarised in the following lemmas. We start with a
lemma which relates differentiation with multiplying with appropriate weights:
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Lemma 128. Let f € W'P(R") then we have

o0

1 2222y = IV flly + 1 1]y for 1 < p < oc.

1=0

Proof of lemma 128:
We have in fact

122 (f))z2ll = [If1Fll
i=0
~ || fIESl + (1]
by proposition 85
~ (| FIWEPI || £l
by theorem 84
= [V £l + [ £l

Next, we present the crucial estimate:

Lemma 129. Let h € BY, (R") and let {fi(x)};—y C L®(R™) be a repre-
sentation of h, i.e. h =" 1"  F ropFfi in S, such that
1l L2 (R, 1°9) || < 2[|A| B3

oo,oo||

Moreover, as usual let o = {p;(v)}2, € ®(R"). Then

I e~ 25 e )] < cotmisn.

Proof of 129:
First of all, remember that

Or* fr = F (ouF fr)

Now, the assertion is an immediate consequence of the following computa-
tions.
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First of all, note that due to the fact that the sum is finite we have

P s+3 ) B
(el = IS all.

s+3
< Xl sl
5+3
< ZH@ S%H [ fxlloo
< 2||h|320,m||2\1%¢k 1
k=0

because || filloo < [[.ful L=°(R",1%)[| < 2[|h|B,

so.00l|-
For this last quantity we have
s+3 s+3

2||h|Bm||ZHa—sok =2||h|Bm\|ZH—( )2

remember that () = 1 (27F)

5+3
- 2uh|BmHZ]2"’“2k( é1) @)

s+3
0

= 2/h|B% ol 2"
k=0

1

%T
AS

0
2(|h| B H— ‘ ok
H | oo,ooH 8x¢1 12

0
2(|h| B° H— ‘ 2.2 _ ]
MBS ol || )
C2°||h| BY, .||

IN

Remark 130. Obviously the assertion of the above lemma remains true if
we look at derivatives in other directions.

Last, but not least we will need the next two technical lemmas.
The first one enables us to interchange the order of summation and integra-
tion.
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Lemma 131. Let a and b belong to C°(R™), t = s+ j where j € {—1,0,1}
and h € By, . (R"). Then

/(Zabs—abs Z/nabs—abs

Proof of lemma 131:
First of all, define for z € R™

n

Ja(z) =) _(ah(2)b)(2) — ay (2)b5(2))h(2).

s=0

Our goal is to apply dominated convergence in order to prove the claim.
Obviously we have

o0

a2 <D (las (2155 ()] + lag ()1B5()]) [h(2)] =2 g(2).

s=0

Next, we will show that g € L'(R").
Remember that we may choose a representation of h, i.e. a sequence in L,
such that h = "2  F topF fr in &’ and

|| £l L (R™, 1°0)[| < 2[|h| B,

oopoH

Moreover, keep in mind what ideas we used in order to prove lemma 129.
Some ideas will be used here with some small changes! Then we have

/Rn > (las ()b ()] + lay ()63 (2)]) 1R(2)]
= Z/ (lae (21165 (2)] + lay, ()] [63(2)]) |(2)]

by monotone convergence
more generally we have LP(R",[?) = [P(LP(R")) V1 < p < o0
s+3

=Z/ (@I + 6 D] 3 o= ()

by lemma 132 below

l9(2)|

R

s+3

< Z/ (e @I05(a)1 + ]| e 42
s+3
< 2/ (@) + 6N X Il
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and finally

s+3

[an= e [ (@I + DIk, ST

Now, we continue our estimates as follows

0 < €3 [ (I + ) I o2

Rn

< O2|h| B ol Z/R (la5.(2)115(2)] + lag (2)][2(2)1)

< CthBgo,ooH/]R D o lab(2)12°065(2)| + ) lal(2)[2°|b3 ()]
" s=0 s=0

by monotone convergence

> 1/2 , X 1/2
< B [ (T ler) (X 2 ner)
R™ * =0 s=0
> 12 , & 1/2
Bl [ (S laer) (2 er)
R™ % =0 s=0

by Holder’s inequality applied for the series
< ORI B soll (laz| 211y [z + [1V0y[l2) + llayll2(11bz] |2 + [|Vs]]2)

by lemma 128
< Clh By ool [ Valla|[o]W22]]

< o0

since we assumed that a,b € C5°(R").

In a next step we want to show that

n

Z(aibz —ayh;) — Z (alb; —ayb;) in S.

s=0
It is enough to show that Vi € N

M(Zaibi—aibi) — 0 asn,m — oo.

s=n
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Note that we have

N ( i aby—apy) = Y [Joo?( i bty — alp; ) ||
s=n |oz\ , |ﬁ|§i s=n i
< (0 UQ(n—li?meM(a;)M(Z o)

o Ni(a)NG(Y0)

n—1<t<m+1

— 0asn,m — oo.

In the second last step i + 1 indicates the number of possible choices of |«
and |3].

In the last step we used the following reasoning:

We know that (recall that 3372 f/ = f in S'(R"))

n

s .
g a, — a; in S as n,m — 00.
5=0

But this implies that

m

M(Za3> —0inSasn,m—ooV1

x
n

and also
Ni(al) — 0in S ast — oo Vi.

x

Similar conclusions hold also for b,, a, and b,.
This finally enables us to apply dominated convergence which completes the
proof.

OJ

The second and last lemma tells us that in order to analyse the whole sum
inf=>,", F Lo, F fi, we just have to study an appropriate part of it.

Lemma 132. Let a and b belong to C°(R™), t = s+ j where j € {—1,0,1}
and h € By, (R™) with representation f = > ;" o F ' opF fi as above. Then

a tys a tys
- 8:c(a b, )h ay(a b2 h

_ /Rn %(a%i) (§f1(¢kffk)> — agy(atbj’;) <§f1(90kffk)>

k=0 k=0



APPENDIX B. ALTERNATIVE APPROACHES 132

Proof of lemma 132:

First of all, note that h € &’ and atbz and a'b? belong to S independently of
the choices of s and ¢.

We now calculate

a S a t1s . a t1s a t1s
5 5-(a'b))h - gy @B = | S | ay( atb?)h
8 ‘)
8
- (@02)Y " F Yo F
- 8y ; <Pk fk)
a s+3
= 81‘ tbs [Z.}t gok]:fk + Z f gpk]:fk)}
R k=s+4
a s+4
- (a'b) [Z]—" (onFfi) + Z F o F ).
Rm 8y k=s+4

These calculations show that we have to prove that

0
(a'b) Z]—" (oxF fr) =0

R™ 8:1: ks td
and
a o0
b? -1 =0
3y 3 o)

In what follows, we will only discuss the first integral because the second one
can be analysed in exactly the same way.
So from now on we look at

a t1s
/Rn@x ) Z]—" (orF fr)-

k=s+4
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Here we have

Dy o Py = [ LaipF (Y e

n OX n (995
R k=s+4 R k=s+4

sine the sum is locally finite

= [ LayyFrrE ( Z o fi)

re 0T k=s+4
- e [ F(n) 3 - 9F R

because — 0 —(a b;) € S and E o Ffr) €S
ox
k=s+4
= 0.

In the last step of the above calculations we used the fact that

0
supp F(5-(a'%)) < {el ¢ < 5-27)
and .
supp Y en(—-) C {¢] 277 < [¢l}
k=s+4
imply that
9,
supp F(a (a' bs)) N supp Z o =
k=s+4
This completes the proof.
O
Now we can start with the estimate of Y - f+$1 pabby —albs. Our goal
is to show that 700 S 1 al by — albs belongs to BY ;. Makmg use of the

duality between BY | and BY, it sufﬁces to show that for all h € BY, _ the
following inequality holds

oo s+1

/ Z Z ath—aZbi)h<oo.

s=0 t=s—1

First of all let us fix t = s+ j where j € {—1,0,1}. Moreover we will assume
that a and b belong to C§°(R™) by density.
In a first step we will estimate

/n (> alb; — alpi)h.

s=0
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In this case we have

/(Zabs—abs> = /n;a —abs
= Z/nabs h—albih

because of lemma 131

_ Z/ 836 tbs aa(tbs)h
- g /[ [%(atbz)(ff—lmm)

s+3

(a'b?) (Z&f (onF f )]

because of lemma 132

8+3
:Z/n tbs Z;f 1))
s+3

+a'b? — ( Z Fi gok]-"fk)ﬂ

by a s1mp1e 1ntegrat10n by parts

i/ [|at||bg| ]%(f?‘%s&ﬁf@)“m
s=0 /R” k=0
()| ]

Z/R|atl|b§,|230\|h|320,ool\+|at|\bi|2CthBO

IN

+la'[|0;]

IN

oo,oo“

due to lemma 129

ClIhI B 1| / > 2l oyl D0 2l 3|
" =0 s=0

where we used monotone convergence

C||h|Bgo,oo||[/ (i223’a3+j|2>1/2<§:|bz|2>1/2
Rn s=0 s=0
+<Z22s|as+j|2>1/2<z |b;|2>1/2:|

0 s=0

S=

IA

IA

by Cauchy Schwarz inequality



APPENDIX B. ALTERNATIVE APPROACHES 135

/(Zabs—abs) < ClIRBL ol [lally +11Vall)l byl

+(llally + [1Vallp)l[be] ]
by lemma 128

< OB ll W] o ]|

oo,oo|| |

< 0o0.

The last step holds since we assumed that a € W' and b € W',

Now, since the above estimate is independent of the choice of 7 we immedi-
ately conclude that

co  s+1

/ (D2 D7 aiby—alpn )b < ClURIBY, ool lalw ]| o[,

s=0 t=s—1
This completes the proof of proposition 117.
OJ

Proof of theorem 116:

The proof of theorem 116 is quite similar to the one we gave for proposition
117, but nevertheless let us explain the differences. We will not restate what
trivially is the same in both settings!

First of all, we have to adapt our notion of a product of two tempered dis-
tributions to the homogeneous setting, this is done by the following modifi-
cation:

What concerns notation, we will use the following:

Assume that ¢ = {p;(z)}2_ € ®(R") then set f(x) = F(p;Ff)(x). Now
we can proceed to the definition mentioned before:

Definition 133 (Product in homogeneous function spaces). Let f, g be two
tempered distributions lying in some homogeneous function spaces. The (ho-
mogeneous) product of f and g is given by

Fro=tim (30 7)( 3 4)

1=—00 l=—oc0

whenever the right hand side of the above equation ezists in S'(R™).
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A first natural question which arises from this definition is: Assume that
f € LP(R") and g € L”(R"). Does the (homogeneous) product defined
above coincide with the usual point-wise product of f and g7 The answer is
yes, which we summarise in the following lemma. Recall that for 1 < p < 0o
we have [P = F0,.

Lemma 134. Let 1 < p < oo and assume that f € LP and g € L with

% + Z% = 1. Then hmj—>00 ( J fZ)( . gl> erists in D/(Q> fO'l" all

open bounded sets ) and the restriction of lim;_.o <ZJ..:700 fz) ( {:700 gl)

to Q) is a reqular distribution which coincides with the usual point-wise mul-
tiplication there.

The proof of this lemma is the same - of course with the necessary changes
- as the one for the corresponding non-homogeneous assertion which can be
found e.g. in [43].

Next, we modify our paraproducts such that they fit into the homogeneous
framework. We will use the following ones:

o] k—2
w9 = >, > 9"

R
wa(fo9) = >, > I

k=—o00l=k—1

00 -2
A5(f9) = >, > g

l=—00 k=—00

As in the case of proposition 117 we will study

0o s+1
#1(aa, by) 5 F1(ay, be)  Fs(an, by)  Fs(ay, by) and > Y alb) — albs.
s=—o0t=s—1

Analysis of terms of the form > >° 2 gips

S=—00 t=—o0 "7y

A careful look at the proof of proposition 123 shows that the corresponding
assertion holds also in the homogeneous framework.

What concerns lemma 126 it translates into the homogeneous setting as
follows:
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Lemma 135. We have

lsupl 3 1 1P < CllAE(RY)
forall f € F 2(]R") if 1 <p<oo.

Proof of lemma 135:
The claim follows immediately from the facts that

e HP =[P = FIQQ for 1 < p < oo, see theorem 84.

137

° Z;:_OO @;(z) = (2 °z) for all s € Z, recall also the example from 82.

Apart from that, the proof is the same as in the non-homogeneous case (cf.

e.g. [43]).

As before, it is enough to show that || S25—>_ atbk | LY(1?)|| < oo

—oc0 VY

Now, we put together all the information we have:

First note that supkeZ|Zf:_oo at| € LP. This holds since a, € LP

F£2 which together with lemma 135 gives that ||supjcy | Zt_
CHlaull, < oc.

AN

O

<

Apart from that we have that [|(32;7 _ (0F)? )2 ||y = by | F 201 S Clby |-

So we estimate

00 k—2
1
| Z alby | LA = 110> ()2 dbbg)®)Ih
t=—00 k=—o00 t=—00
1
< |Sup| Z Z AREIH
t=—00 k=—o00

< Cllag|lp [1by]lp

where in the last step we used Holder’s inequality.

So summarised we have the following estimate for 2°° Y72 4 ab;
> Z byl = ClI Y Z agby| 7|
s§=—00 t=—00 §=—00 t=—00
< d Z ayby | L) < Cllaallp 11by]l-

t=—00
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73(ay, by) T1(ay, b,) and 73(ay,, by) can be estimated in exactly the same way.

Analysis of > 2 St atps — a, b,

S=—00 t=s—1 """y

s+1 at b’ —

Before we come to the actual estimate of the term > 7% > 77" | alb?

let us state and recall some results we will use.

ayb

First of all remember that we have (BY,)* = BY,  (for instance see [22] ).

The crucial estimate in the homogeneous case is stated as follows.
Lemma 136. Let h € B, (R") and let {fi(z)}re_ . C L=(R"™) be a rep-
resentation of h, i.e. h="3 1. F 1opFfi in Z', such that

[1fl LR, 19)|| < 2||h| B3

oo,oo||

Moreover, as usual let o = {p;(x)}2_ € ®(R™). Then

HZ o il —H%(Zwﬁc)\( < Co|IHBY, ||

Proof of lemma 136:

First of all, remember that

G * fro = F ' (onF fr)

Now, the assertion is an immediate consequence of the following computa-
tions.
First of all, we have the trivial estimates

a s+3 s+3
[ 3 el = || 5 s,
< iiua—wu
< § |2l s
- s+3
<

2piBecell 32 |2

because kaHoo < [ fil LR, 1%)|| < 2||h|BS

oo,ooH
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For this last quantity we have

s+3 s+3

2Bl 32 |2a]| = allblBe Py 12 (02) 2

remember that gok( ) =o¢(27%)

1

s+3 a
= 2| B ’2”’“2’“(— 5) (2"
Bl 3 242 (58) 2]
s+3
= 2||h|B QkH H
B0l 3 2|70
) s+3
= oLl 24| >
< C2|h|BY |-
The last step holds since if s +3 < 0 then
s+3 0
IR DL
k=—o00 k=—o00
and if s +3 > 1 then
5+3 s+3
SEED SRR ¥
k=—o00 k=—00
< 2402
as in the non-homogeneous case
< C2°.

O

Lemmas 131 and 132 can easily restated and reproved in the homogeneous
setting with the same ideas, so we do not rewrite what we did earlier.

Now we can start with the estimate of >~ ersl 1 %bz — ayb;. Our goal
is to show that 720 _ S7F1 1 albs — a,b; belongs to BLI Maklng use of

the duality between B 11 and BOO,Oo it sufﬁces to show that for all h € Bgoyoo
the following inequality holds

[e'¢) s+1

/ (Z Zath—aZbi>h<oo.

s=—o0 t=s—1
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First of all let us fix t = s+ j where j € {—1,0,1}. Moreover we will assume
that a and b belong to C3°(R™) by density.
In a first step we will estimate

o

/n( Z atxbz—abec)h'
In this case we have
/ < i aibi—%bi)h - / Z albih —albih
= Z / a bzh_aybih
i s:z-:oo / e G
s+3
) S_Zoo/” 890 tbs Z -7:_1(90k.7:fk)>
0 s+3
83/ (a'B2) (Z F! SOkak))]
- s+3
) —Zoo/ tbzax Z_ f‘l(wk;ffk)>

s+3

+a'by - ( Z F Sﬁk}—fk)ﬂ

by a s1mple mtegratlon by parts

Z/ ottty |2 (ff (e F )|

(3 7 erm)| ]

Z / |a'[]by2°C 1| By, ool + 10" [16312C 1] BS, o

S§=—00

due to lemma 136

IN

+a'[[b;]

IN
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o0 o0

[ (X a—ap) < clpiE.| / Y a4 Y 2]

where we used monotone convergence

) > N1/2 > 1/2
< B[ [ (30 2 ) (S k)
R = s§=—00
> CNl2, & 1/2
+< Z 223‘as+j|2> ( Z |bi‘2) i|
by Cauchy Schwarz inequality
< ORI B ol (11 allpllbylly + [[Vallpl[bz] 1)
by theorem 84
< ClhIBZ sl llal W] {[p| W
< 0oQ.

The last step holds since we assumed that a € W'? and b € W'
Now, since the above estimate is independent of the choice of j we immedi-
ately conclude that

[e¢) s+1

/Rn< S° D akby - albi )b < ClRIBY | [l oy

s=—oot=s—1
This completes the proof of theorem 116.
O

B.2 Application of the commutator estimate
due to Coifman, Rochberg and Weiss ([18])

Again we assume that a,b € WH3(R"). Our goal is to show that
agby, — ayb, € hl.

The idea here is to use - apart from the famous duality between bmo and
h' which we are already familiar with - the commutator estimate due to
Coifman, Rochberg and Weiss ( CRW commutator estimate ).

Let us start with the following definition
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Definition 137 (Pseudodifferential operator). A pseudodifferential operator
P is an operator of the following form

PJ(x) = plz, D) f(z) = (27) " / Pl &) F(€)c¢ de = F\(Fp(a, €))

n

where

p(z,§) = Z aq (7)€"

| <k

We say that P belongs to OPS if the symbol p(x, &) belongs to the class of
symbols S. In particular we have the following classes of symbols:
Assume that p,d € [0,1] and m € R. Then S} consists of all C*-functions
satisfying
|DIDEp(x, )] < Caple)™ Aol
2

for all o, B where (£) = (14 |¢[*)2.
For a detailed discussion of such operators see [57], vol. II, or [59].

Lemma 138. (/57]) If § < 1, then
p(z,§) : S'(R") — S'(R™)
A proof of this lemma can be found for example in [57], vol. 11, p. 3.

Theorem 139 (CRW commutator estimate,[18]). Given P € OPS};, 1 <
p < 00, we have

1f(Pu) = P(fu)llp < Gyl f[omollullp-

A proof of this theorem can be found in [18] or [6].

In a first step we map
a—a=Aa=F'((1+]¢?)7a)

and similarly for b.
In view of theorem 139 we define appropriate pseudodifferential operators in

a second step:
O, A1
P=( o)

9,A"!
@= ( Z9,A71 > '

and

Then we have
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Pa - Qb = azb, — a,b,

which is exactly the quantity we are interested in.

O A1

tp -1 —1
Q'P = (9,A"" —0,A )(ayA_1

) = 0,A9,A" =0, A T 9,A L = 0

Now, as before we want to show that for all h € bmo the following inequality
holds

/(axby —ayby)h < 00

where this time the left hand side can be rewritten as

(0 Pa-Qh) = [(ab,~ b
~ [ nra- @b
_ / b Q' (hPa)
= (5.1Q"mlPA) + (4D, Q'PE)
— (5@ ] Pa)

where in the second last step [.,.] denotes the usual commutator and my,
denotes the multiplication with A. The last step holds because of the fact
that Q'P = 0. Now we use theorem 139 to estimate

/(axby —ayby)h = (b, [Q", my) Pa)

< |I§H2 Q" my) Pl
< [Ioll2Ca| IRl lomo| | Pal]2
< C(lIbllz + IVol[) |l lomo| [V all2

where in the last step we used the following calculation

N+ €220, < |11+ 1€)D]]a

< @+ [&hbll
=0

b+ C > 10,00 1]
=0
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which implies B
[1bl]2 < C([[bl]2 + [[VB]]2).

The last thing that remains is to show that our operators P and () satisfy
the hypothesis of theorem 139, i. e. we have to show that they belong to
S7 . Let us show this for the operator P, since for @ it is the same. First of
all note that the symbol corresponding to P is

o (G
w61 (8 i)

since A~! is given by

But this immediately implies

ID2Dgp(x, ) = [DEE(1 + |6P) 73| < Ca(l + €75 = Cufe)™®
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