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1 Introduction

The first appearance of the Willmore functional is in the work
of Sophie Germain on elastic surfaces. Following the main lines
of J. Bernoulli and Euler’s studies of the mechanics of sticks in
the first half of the XVIIIth century, Germain formulated what
she called the fundamental hypothesis: at one point of the sur-
face the elastic force which counterbalances the external forces is
proportional to the sum of the principal curvature at this point,
i.e., what we now call the Mean curvature. Although Germain’s
work was controversial at the time and was criticized by con-
temporaries including Simeon Poisson, the Willmore energy was
finally established on physical grounds by G. Kirchhoff in 1850
[Ki] as the free energy of an elastic membrane modulo the addi-
tion of a null Lagrangian (see for instance [LaLi]).

The Willmore energy was probably first considered in geome-
try in the early XXth century by Wilhelm Blaschke in his efforts
to merge minimal surface theory with conformal invariance. He
proved that the Willmore energy of a closed surface remains in-
variant under conformal transformations of the ambient space.
As proved quite recently [MoN], this Lagrangian is the unique
one possessing this property modulo the addition of a multiple
of the Gauss curvature.

Because of its simplicity and fundamental nature, the Will-
more energy appears in many areas of science and technology.
Beyond non-linear elasticity and conformal geometry, one sees
it for instance in general relativity, where the Willmore energy
is the main term in the so called Hawking Mass. It arises also
in cell biology as the main term of the free elastic energy of lipid
bilayer membranes and is called the Helfrich Energy there. The
Willmore Energy in its umbilic form also arises in the design of
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multifocal optical elements (see for instance [KaRu]), ...etc
For many years, the only surfaces known to be critical for

the Willmore Lagrangian were the minimal surfaces and their
images under conformal transformation. This perhaps explains
why there was essentially no work on the variational theory of
the Willmore functional during the several decades after Blaschke’s
seminal work. In the short but decisive paper [Wi] in 1965,
Tom Willmore reintroduced this Lagrangian, which now bears
his name. He formulated there what is now called the Willmore
Conjecture, which asserts that the Willmore energy of a compact
surface of non-zero genus in three-dimensional Euclidian space
is at least 2π2, and this minimal energy is only achieved by the
stereographic projection of the Clifford Torus in S3 (and its con-
formal transformations). This famous conjecture was proved in
2011 by Fernando Codá Marques and André Neves in [MN] and
their proof is the subject of one of the mini-course given at the
present Park City Summer School 2013.

In the present series of five lectures, we develop some funda-
mental tools in the analytic study of the Willmore Lagrangian
motivated by the following set of questions:

i) Does there exists a minimizer of the Willmore functional
among all smooth immersions of a fixed surface Σ2? If
there is, can one estimate the energy and special properties
of such a minimizer?

ii) Does there exist a minimizer of the Willmore functional
among a more restricted class of immersions, for exam-
ple, considering only the conformal immersions relative to
a fixed conformal class c on Σ, or among all immersions
of Σ into R3 which enclose a domain of given volume and
which have a fixed area?
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iii) How stable is the Willmore equation? In other words,
does a sequence of “approximately Willmore” surfaces, e.g.
Palais-Smale sequences for the Willmore energy, necessarily
converge to a Willmore surface?

iv) Can one produce Willmore Surfaces using min-max argu-
ments ? More specifically can one apply fundamental vari-
ational principles such as Ekeland’s variational Principles
or the Mountain pass lemma to the Willmore functional?

Question i) was first considered by Leon Simon in [Sim86] and
completely solved when Σ is the torus T 2 in [Sim93]. Later, in
[BK03], a condition shown in [Sim93] to be sufficient to guar-
antee the existence of minimizing Willmore surfaces was proved
to hold for every oriented closed surface. Simon’s approach has
two main features. First, it is an ambient approach: namely, sur-
faces are viewed as subsets1 of the ambient Euclidian space. The
second is the use of biharmonic approximation, where almost-
minimizing surfaces are “improved” by replacing small pieces
by biharmonic graphs. The main drawback of this strategy is
that it seems to be only well-suited for the study of minimizing
surfaces, but not for questions of the form iii) and iv) for non-
minimizing critical points. Simon’s ambient approach was also
used in [KS] to give partial answers to question ii).

In 2010, the author introduced the notion of weak immersions
in order to provide a suitable framework in which general vari-
ations of the Willmore Lagrangian (see [Riv10]) are well posed.
The goal of this mini-course is to present fundamental proper-

1More precisely, this approaches considers immersed surfaces as varifolds, i.e., Radon
measures in the Grassman manifold of 2-planes of Euclidian space corresponding to the
tangent bundle of these surfaces immersed into the tangent bundle the euclidian ambient
space.
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ties of this approach, which turns out to be a fundamental tool
for addressing all of the questions i)...iv) . To illustrate this, we
explain in the last lecture how to use these properties to give
a new proof of Simon’s existence result. More completely, we
address in this mini-course the following questions:

a) Does a weak immersion define a smooth conformal struc-
ture ?

b) What happens to a sequence of weak immersions of a given
surface Σ2 for which the Willmore energy is uniformly bounded?
Does it convergence in some sense to a weak immersion ?

c) Is there a weak formulation of the Willmore equation which
is compatible with the notion of weak immersion ?

d) Are weak immersions which are solutions to the Willmore
equation necessarily smooth ?

The five lectures of this mini-course correspond to a presenta-
tion of the 2006 and 2010 papers [Riv06] and [Riv10], published
respectively in 2008 and 2014. Since that time, weak immer-
sions have played a crucial role in answering questions i)...iv)
see [Riv10], [Riv15], [KMR] and [Riv16].

5



2 Notations and fundamental results on the

differential geometry of surfaces

2.1 Notations

For a smooth map ~e : D2 → Rm, denote

∇~e :=

(
∂x1
~e

∂x2
~e

)
. (2.1)

The associated 1-form is denoted by d~e and in local coordinates
given by

d~e = ∂x1
~e dx1 + ∂x2

~e dx2.

Further, define

∇⊥~e :=

(
−∂x2

~e

∂x1
~e

)
. (2.2)

It corresponds to the 1-form ∗d~e, where ∗ is the Hodge operator
from ∧1R2 to ∧1R2. Indeed, in local coordinates we have

∗d~e = ∂x1
~e ∗ dx1 + ∂x2

~e ∗ dx2 = −∂x2
~e dx1 + ∂x1

~e dx2.

For smooth maps ~e, ~f : D2 → Rm, denote

〈~e,∇~f〉 :=

(
〈~e, ∂x1

~f〉
〈~e, ∂x2

~f〉

)
, 〈~e,∇⊥ ~f〉 :=

(
−〈~e, ∂x2

~f〉
〈~e, ∂x1

~f〉

)
, (2.3)

~e×∇~f :=

(
~e× ∂x1

~f

~e× ∂x2
~f

)
, ~e×∇⊥ ~f :=

(
−~e× ∂x2

~f

~e× ∂x1
~f

)
, (2.4)

where 〈·, ·〉 is the inner product of Rm and we use the ×-opera-
tion, if m = 3. Similarly, for λ : D2 → R and ~e : D2 → Rm we
write

∇λ · ~e :=

(
∂x1
λ ~e

∂x2
λ ~e

)
, ∇⊥λ · ~e :=

(
−∂x2

λ ~e
∂x1
λ ~e

)
. (2.5)
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As notation suggests, we write for instance

〈∇⊥~e,∇~f〉 = 〈∂x1
~e, ∂x2

~f〉 − 〈∂x2
~e, ∂x1

~f〉, (2.6)

and if m = 3,

∇~e×∇⊥ ~f = −∂x1
~e× ∂x2

~f + ∂x2
~e× ∂x1

~f.

Naturally, denote
|∇~e|2 := 〈∇~e,∇~e〉.

Similarly,

∇λ · ∇~e := ∂x1
λ ∂x1

~e+ ∂x2
λ ∂x2

~e, (2.7)

∇⊥λ · ∇~e := −∂x2
λ ∂x1

~e+ ∂x1
λ ∂x2

~e. (2.8)

Applying the divergence operator div to a vector field

~X =

(
~X1

~X2

)

with components ~Xi : D
2 → Rm (for instance ~X of the form

(2.1), (2.2), (2.3), (2.4), (2.5)) is to be understood as

div ~X = ∂x1
~X1 + ∂x2

~X2.

Note that

div〈~e,∇⊥ ~f〉 = 〈∇~e,∇⊥ ~f〉 = −〈∇⊥~e,∇~f〉 (2.9)

and for m = 3,

div
[
~e×∇⊥ ~f

]
= −∂x1

~e× ∂x2
~f + ∂x2

~e× ∂x1
~f

= ∇~f ×∇⊥~e.
(2.10)
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Similarly, we use the above introduced notation for 1-forms. For
instance, 〈~e, d~f〉 is the 1-form, which is in coordinates given by

〈~e, d~f〉 := 〈~e, ∂x1
~f〉 dx1 + 〈~e, ∂x2

~f〉 dx2

and thus the associated 1-form to the vector on the left hand
side of (2.3). Finally, define the 2-form

〈d~e, d~f〉 := d〈~e, d~f〉, (2.11)

which in local coordinates is given by

〈d~e, d~f〉 =
(
〈∂x1

~e, ∂x2
~f〉 − 〈∂x2

~e, ∂x1
~f〉
)
dx1 ∧ dx2. (2.12)

Observe that the Jacobian occurring in (2.12) is (2.6).

2.2 Immersions and their geometry

A smooth map ~Φ: M → N between two smooth manifolds M
and N is called immersion if d~Φp : TpM → Tf(p)N is injective
for all p ∈M .

In this course, Σ denotes a smooth 2-dimensional closed ori-
ented manifold and we usually consider immersions (later un-
derstood in a weak sense) from Σ into Rm.

2.2.1 Submanifolds of R3

We start to consider a particularly easy class of immersions,
namely the class of 2-dimensional submanifolds of R3 (the im-
mersion being provided by the inclusion map).

Let S be a 2-dimensional submanifold of R3. We assume S
to be oriented and we denote by ~n the associated Gauss map:
the unit normal giving this orientation.
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The first fundamental form is the induced metric on S that
we denote by g: For any p ∈ S and ~X, ~Y ∈ TpS, it is given by

gp( ~X, ~Y ) := 〈 ~X, ~Y 〉,

where 〈·, ·〉 is the canonical inner product in R3. The volume
form associated to g on S is locally given by

dvolg :=
√
det(g(∂xi, ∂xj)) dx1 ∧ dx2,

where (x1, x2) are arbitrary local positive coordinates.2

The second fundamental form at p ∈ S is the bilinear map
which assigns to a pair of vectors ~X, ~Y in TpS an orthogonal

vector to TpS that we shall denote by ~I( ~X, ~Y ). This normal
vector expresses how much the Gauss map varies along these
directions ~X and ~Y . Precisely, it is given by

~Ip : TpS × TpS −→ NpS

( ~X, ~Y ) 7→ −〈d~np( ~X), ~Y 〉 ~n(p).
(2.13)

Extending smoothly ~X and ~Y first locally on S and then in a
neighborhood of p in R3, one has, using 〈~n, ~Y 〉 = 0 on S,

~I( ~X, ~Y ) = 〈~n, d~Y ( ~X)〉 ~n = d~Y (X)−∇ ~X
~Y

= ∇ ~X
~Y −∇ ~X

~Y .
(2.14)

Here, ∇ is the Levi-Civita connection on S generated by g, and
we have ∇ ~X

~Y = πT (d~Y (X)), where πT is the orthogonal pro-
jection onto TS. ∇ is the Levi-Civita connection associated to
the flat metric and is simply given by ∇ ~X

~Y = d~Y (X).

2Local coordinates, denoted by (x1, x2), are provided by a diffeomorphism x from an
open set in R2 onto an open set in Σ. For any point q in this open set of S we shall denote
by xi(q) the canonical coordinates in R2 of x−1(q). Finally ∂xi

is the vector-field on S
given by ∂x/∂xi.
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An elementary but fundamental property of the second fun-
damental form says that it is symmetric3. It can then be diago-
nalized in an orthonormal basis and the two eigenvalues κ1 and
κ2 are called the principal curvatures of the surface at p. The
mean curvature is then given by

H :=
κ1 + κ2

2
and the mean curvature vector by

~H := H ~n =
1

2
tr(g−1 ~I) =

1

2

2∑
i,j=1

gij ~I(∂xi, ∂xj), (2.15)

where (x1, x2) are arbitrary local coordinates. Here, (gij)ij de-
notes the inverse matrix to (gij) := (g(∂xi, ∂xj)). In particular,
if (~e1, ~e2) is an orthonormal basis of TpS, (2.15) becomes

~H =
~I(~e1, ~e2) +~I(~e2, ~e2)

2
. (2.16)

The Gauss curvature is given by

K :=
det
(
〈~n,~I(∂xi, ∂xj)〉

)
det(gij)

= κ1 κ2. (2.17)

The Willmore functional of the surface Σ is defined by

W (S) =

∫
S

| ~H|2 dvolg =
1

4

∫
S

|κ1 + κ2|2 dvolg.

The Gauss-Bonnet theorem4 asserts that the integral of K dvolg
3This can be seen combining equation (2.14) with the fact that the two Levi-Civita

connections ∇ and ∇ are torsion-free, i.e. we have

∇ ~X
~Y −∇~Y ~X = [X,Y ]

and
∇ ~X

~Y −∇~Y ~X = [X,Y ].

4See for instance [dC76]

10



is proportional to a topological invariant of S: χ(S), the Euler
characteristic of S. Precisely, one has∫

S

K dvolg =

∫
S

κ1 κ2 dvolg = 2π χ(S)

= 4π (1− g(S)),
(2.18)

where g(S) denotes the genus of S. Combining the definition of
W and this last identity one obtains5

W (S)− π χ(S) =
1

4

∫
S

(κ2
1 + κ2

2) dvolg

=
1

4

∫
S

|~I|2g dvolg =
1

4

∫
S

|d~n|2g dvolg.
(2.19)

Hence modulo the addition of a topological term, the Willmore
energy corresponds to the Sobolev homogeneous Ḣ1−energy of
the Gauss map for the induced metric g.

2.2.2 Immersions of an abstract surface into Rm.

Let us now consider the general case that ~Φ: Σ → Rm is a
immersion of an abstract 2-dimensional oriented closed manifold
Σ into Rm.

The first fundamental form associated to the immersion is
the metric g := ~Φ∗gRm induced by ~Φ, where gRm is the canonical
metric on Rm: For all p ∈ Σ and X, Y ∈ TpΣ,

gp(X, Y ) := 〈d~Φp(X), d~Φp(Y )〉
5The last identity comes from the fact that at a point p, taking an orthonormal basis

(~e1, ~e2) of TpS, one has:

|d~n|2g =

2∑
i,j=1

〈d~n(~ei), ~ej〉2 =

2∑
i,j=1

|~I(~ei, ~ej)|2 = |~I|2,

since 〈d~n, ~n〉 = 0.
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where 〈·, ·〉 is the canonical inner product in Rm. The volume
form associated to g on Σ is locally given by

dvolg :=
√
det(g(∂xi, ∂xj)) dx1 ∧ dx2,

where (x1, x2) are arbitrary local positive coordinates.

We shall denote by ~e the map which to a point in Σ assigns
the oriented 2-plane6, given by the push-forward by ~Φ of the
oriented tangent space TpΣ. Using a positive orthonormal basis

(~e1, ~e2) of ~Φ∗TpΣ, an explicit expression of ~e is given by

~e = ~e1 ∧ ~e2.

With these notations the Gauss map which to every point p
assigns the oriented (m− 2)-orthogonal plane to ~Φ∗TpΣ is given
by

~n = ?~e = ~n1 ∧ · · · ∧ ~nm−2.

Here, ? is the Hodge operator7 from ∧2Rm to ∧m−2Rm and
(~n1, . . . , ~nm−2) is a positive orthonormal basis of the oriented
normal plane to ~Φ∗TpΣ. (Consequently, (~e1, ~e2, ~n1, · · · , ~nm−2) is
an orthonormal basis of Rm.)

We shall denote by π~n the orthogonal projection onto the
(m− 2)-plane at p given by ~n(p).

6We denote by G̃p(Rm), the Grassman space of oriented p-planes in Rm that we in-
terpret as the space of unit simple p-vectors in Rm which is included in the Grassmann
algebra ∧pRm.

7The Hodge operator on Rm is the linear map from ∧pRm to ∧m−pRm which to a
p−vector α assigns the (m− p)-vector ?α on Rm, which is characterized by the following
property: for any p-vector β in ∧pRm,

β ∧ ?α = 〈β, α〉 ε1 ∧ · · · ∧ εm,

where (ε1, · · · , εm) is the canonical orthonormal basis of Rm and 〈·, ·〉 is the canonical
inner product on ∧pRm.
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The second fundamental form associated to the immersion ~Φ
is the following map:

~Ip : TpS × TpS −→ (~Φ∗TpΣ)⊥

( ~X, ~Y ) 7→ π~n

(
d2~Φ(X, Y )

)
,

where X and Y are extended smoothly into local smooth vector
fields around p. One easily verifies that, although d2~Φ(X, Y )
might depend on these extensions, π~n(d

2~Φ(X, Y )) does not and
we have then defined a tensor.

Let ~X := d~Φ(X) and ~Y := d~Φ(Y ). Denote also by πT the
orthogonal projection onto ~Φ∗TqΣ.

π~n

(
d2~Φ(X, Y )

)
= d(d~Φ(X))(Y )− πT

(
d(d~Φ(X))(Y )

)
= d ~X(Y )−∇YX (2.20)

= ∇~Y
~X −∇YX,

where ∇ is the Levi-Civita connection in Rm for the canonical
metric and∇ is the Levi-Civita connection on TΣ induced by the
metric g. Here again, as in the 3-d case in the previous subsec-
tion, from the fact that Levi-Civita connections are torsion-free
we can deduce the symmetry of the second fundamental form.

Similarly to the 3-d case, the mean curvature vector8 is given
by

~H :=
1

2
tr(g−1 ~I) =

1

2

2∑
i,j=1

gij ~I(∂xi, ∂xj), (2.21)

8observe that the notion of mean curvature H does not make sense any more in codi-
mension larger than 1 unless a normal direction is given.
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where (x1, x2) are arbitrary local coordinates in Σ and (gij)ij is
the inverse matrix to (g(∂xi, ∂xj)).

We can now give the general formulation of the Willmore
energy of an immersion ~Φ in Rm of an abstract surface Σ:

W (~Φ) :=

∫
Σ

| ~H|2 dvolg.

A fundamental theorem by Gauss gives an expression of the
intrinsic Gauss curvature in terms of the second fundamental
form of any immersion of the surface in Rm. Precisely this the-
orem says (see theorem 2.5 chapter 6 of [dC92])

K = 〈~I(e1, e1),~I(e2, e2)〉 − 〈~I(e1, e2),~I(e1, e2)〉, (2.22)

where (e1, e2) is an arbitrary orthonormal basis of TpΣ.
Note that in particular, the Gauss curvature is controlled by

the second fundamental form as follows:

|K| ≤ |~I(~e1, ~e1)||~I(~e2, ~e2)|+ |~I(~e1, ~e2)|2

≤ 1

2

(
|~I(~e1, ~e1)|2 + |~I(~e2, ~e2)|2 + 2|~I(~e1, ~e2)|2

)
(2.23)

=
1

2
|~I|2g.

From identity (2.22) we furthermore deduce easily

|~I|2g = 4| ~H|2 − 2K. (2.24)

Hence, using Gauss-Bonnet theorem, we obtain the following
expression of the Willmore energy of an immersion into Rm of
an arbitrary closed surface:

W (~Φ) =
1

4

∫
Σ

|~I|2g dvolg + π χ(Σ). (2.25)
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Let us take a local normal frame around p ∈ Σ: a smooth map
(~n1, · · · , ~nm−2) from a neighborhood U ⊂ Σ into (Sm−1)m−2 such
that for any point q ∈ U , (~n1(q), · · · , ~nm−2(q)) realizes a positive
orthonormal basis of (~Φ∗TqΣ)⊥. Then

π~n

(
d2~Φ(X, Y )

)
=

m−2∑
α=1

〈d2~Φ(X, Y ), ~nα〉 ~nα,

from which we deduce the following expression, which is the
natural extension of (2.13):

~I(X, Y ) = −
m−2∑
α=1

〈d~nα(X), ~Y 〉 ~nα, (2.26)

where we denote ~Y := d~Φ(Y ). Let (e1, e2) be an orthonormal
basis of TpΣ. Then the previous expression of the second fun-
damental form implies

|~I|2g =
2∑

i,j=1

m−2∑
α=1

|〈d~nα(ei), ~ej〉|2 =
2∑
i=1

m−2∑
α=1

|〈d~nα, ~ei〉|2. (2.27)

Observe that

d~n =
m−2∑
α=1

(−1)α−1d~nα ∧β 6=α ~nβ

=
2∑
i=1

m−2∑
α=1

(−1)α−1〈d~nα, ~ei〉 ~ei ∧β 6=α ~nβ.
(2.28)

(~ei ∧β 6=α ~nβ) for α = 1 . . . ,m− 2 and i = 1, 2 realizes a linearly
independent family of 2(m−2) orthonormal vectors in ∧m−2Rm.
Hence

|d~n|2g =
2∑
i=1

m−2∑
α=1

|〈d~nα, ~ei〉|2 = |~I|2g. (2.29)
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Combining (2.25) and (2.29), we obtain

W (~Φ) =
1

4

∫
Σ

|d~n|2g dvolg + π χ(Σ), (2.30)

which generalizes identity (2.19) to arbitrary immersions of closed
2-dimensional surfaces.

The negative Laplace-Beltrami operator ∆g associated to the
metric g = g~Φ, acting on a smooth function f : Σ → R, is in
local coordinates given by

∆gf =
1√

det(gij)
∂xi

(
gij
√

det(gij)∂xjf

)
, (2.31)

where we use the Einstein summation convention.

2.2.3 Immersions into a Riemannian manifold

We now want to have a short glance at a more general frame-
work, namely immersions mapping into a Riemannian manifold:

Let ~Φ be an immersion from a 2-dimensional closed, ori-
ented manifold Σ into an arbitrary oriented Riemannian mani-
fold (Mm, g) of dimension m ≥ 3.

The first fundamental form g of ~Φ is the pull-back of the
metric g by ~Φ: For all p ∈ Σ and X, Y ∈ TpΣ, it is given by

gp(X, Y ) := g
(
d~Φp(X), d~Φp(Y )

)
.

For defining the second fundamental form one formally replaces
the exterior differential d with the Levi-Civita connection ∇ of
(M, g). Precisely, the second fundamental form associated to
the immersion ~Φ at a point p ∈ Σ is the following map:

~Ip : TpΣ× TpΣ −→ (~Φ∗TpΣ)⊥

(X, Y ) 7→ π~n

(
∇~Y (d~Φ(X))

)
,
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where π~n denotes the orthogonal projection from T~Φ(p)M onto

(~Φ∗TpΣ)⊥, the space orthogonal to ~Φ∗(TpΣ) with respect to the

metric g. As before we use the notation ~Y = d~Φ(Y ).

As before, the mean curvature vector is given by

~H =
1

2
tr(g−1~I) =

1

2

2∑
i,j=1

gij ~I(∂xi, ∂xj), (2.32)

where we are using local coordinates (x1, x2) on Σ. The Will-
more energy of ~Φ is defined as

W (~Φ) :=

∫
Σ

| ~H|2 dvolg.

2.3 Conformal invariance of the Willmore Energy

Definition 2.1. i) Two metrics g and h on a smooth mani-
fold M are said to be conformal (or conformally equivalent),
if there exists a smooth function µ : M → R such that

h = e2µg.

ii) An immersion ~Φ: M → N between two Riemannian mani-
folds (M, g) and (N, k) is called conformal if the pull-back
metric h := ~Φ∗k is conformally equivalent to g on M .

Example.

i) Let U ⊂ C be an open subset and ~Φ: U → C a diffeo-
morphism onto ints image. ~Φ is conformal if and only if
it is either holomorphic (if it is orientation-preserving) or
antiholomorphic (if it is orientation-reversing). In particu-
lar, the space of conformal transformations of C is infinite-
dimensional.

17



ii) The group of conformal transformations in dimension m ≥
3 reduces to a finite-dimensional group. Precisely, Liou-
ville’s theorem gives that any conformal diffeomorphism ~Φ
from U ⊂ Rm into Rm is of the form

~Φ(x) = a+ α
A(x− x0)

|x− x0|ε
,

for some a ∈ Rm, x0 ∈ Rm\U , α ∈ R, an orthogonal matrix
A and ε ∈ {0, 2}.

iii) The space of conformal maps from 2D into 3D is infinite-
dimensional. It contains non-analytic mappings.

The conformal invariance of the Willmore energy was known
since the work of Blaschke [Bla29] in 3 dimensions, in the general
case it is a consequence of the following theorem due to Bang
Yen Chen [Che74].

Theorem 2.2. Let ~Φ be the immersion of a 2-dimensional ori-
ented manifold Σ into a Riemannian manifold (M, g).

Let h be a conformally equivalent metric to g, given by

h := e2µg.

We denote by ~Hg and ~Hh the mean curvature vectors of the im-
mersion ~Φ in (M, g) and (M,h) respectively. We also denote
by Kg and Kh the scalar curvatures of (Σ, ~Φ∗g) and (Σ, ~Φ∗h)

respectively. Furthermore, K
g

and K
h

denote the sectional cur-
vatures of the subspace ~Φ∗TpΣ in the manifold (M, g) and (M,h)
respectively. With the previous notations the following pointwise
identity holds:

e2µ◦~Φ
(
| ~Hh|2h −Kh +K

h
)

= | ~Hg|2g −Kg +K
g
. (2.33)
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Proof of theorem 2.2. See [Riv].

The conformal invariance of the Willmore energy is a corol-
lary of theorem 2.2.

Corollary 2.3. Let Σ be a smooth 2-dimensional closed ori-
ented manifold and let ~Φ be an immersion of Σ into an oriented
Riemannian manifold (Mm, g).

Let Ψ be a positive conformal diffeomorphism from (Mm, g)
into another oriented Riemannian manifold (Nm, k).

Then the following equality holds:

W (~Φ) +

∫
Σ

K
g
dvol~Φ∗g = W (Ψ ◦ ~Φ) +

∫
Σ

K
k
dvol(Ψ◦~Φ)∗k, (2.34)

where K
g

(resp. K
k
) is the sectional curvature of the 2-plane

~Φ∗TΣ in (Mm, g) (resp. of the 2-plane Ψ∗~Φ∗TΣ2 in (Nm, k)).

Proof of corollary 2.3. By definition Ψ realizes an isometry
between (M,Ψ∗k) and (N, k). Let µ : M → R such that

e2µg = Ψ∗k.

We can apply the previous theorem with h = Ψ∗k and obtain[
| ~H~Φ∗g|2 −K~Φ∗g +K

g
]

= e2µ◦~Φ
[
| ~H(Ψ◦~Φ)∗k|2 −K(Ψ◦~Φ)∗k +K

k
]
.

Furthermore, we have

dvol~Φ∗g = e−2µ◦~Φ dvol(Ψ◦~Φ)∗k.

Hence combining the two last facts gives the following pointwise
identity everywhere on Σ:[

| ~H~Φ∗g|2 −K~Φ∗g +K
g
]
dvol~Φ∗g

=
[
| ~H(Ψ◦~Φ)∗k|2 −K(Ψ◦~Φ)∗k +K

k
]
dvol(Ψ◦~Φ)∗k,

(2.35)

19



(2.34) is obtained by integrating (2.35) over Σ, the scalar cur-
vature terms canceling each other on both sides of the identity
due to Gauss-Bonnet theorem. 2

Example.

i) Let ~Φ: Σ→ Rm be an immersion into Rm. Define Ψ to be
the inverse of the stereographic projection

π : Sm \ {(0, . . . , 0, 1)} → Rm.

Recall that π is conformal, thus applying Corollary 2.3 gives∫
Σ

| ~H~Φ∗gRm |2dvol~Φ∗gRm =

∫
Σ

(
| ~HΨ◦~Φ)∗k|2 + 1

)
dvol(Ψ◦~Φ)∗k,

where k denotes the round metric on Sm.

ii) For a ∈ Rm, consider the inversion ia at a, which for x ∈
Rm \ {a} is given by

ia(x) =
x− a
|x− a|2

.

ia, restricted to Rm \Bδ(a), is a conformal diffeomorphism.

Given a smooth immersion ~Φ: Σ→ Rm with a /∈ ~Φ(Σ), we
have thus

W (ia ◦ ~Φ) = W (~Φ),

due to Corollary 2.3.

If a ∈ ~Φ(Σ), then the situation is different. In fact, in this
case we have

W (ia ◦ ~Φ) = W (~Φ) + 4π · Card{~Φ−1(a)}.
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2.4 Two-dimensional geometry in isothermal charts

Definition 2.4. Let ~Φ: Σ→ Rm be an immersion of Σ. A chart
ψ : D2 → Σ is called isothermal or conformal for ~Φ, if 〈∂x1

(~Φ ◦ ψ), ∂x2
(~Φ ◦ ψ)〉 = 0 in D2

|∂x1
(~Φ ◦ ψ)| = |∂x2

(~Φ ◦ ψ)| in D2.
(2.36)

Here, 〈∂x1
(~Φ ◦ψ), ∂x2

(~Φ ◦ψ)〉 denotes the usual inner product in
Rm.

Note that a different way of formulating (2.36) would be to
say that the map ~Φ ◦ ψ : D2 → Rm is conformal (cf. Defini-
tion 2.1 ii)).

In isothermal charts many objects defined in subsection 2.2
take an easier form, which we want to explore now.

Let ψ : D2 → Σ be an isothermal chart for the immersion
~Φ: Σ→ Rm.

The first fundamental form in the coordinates provided by ψ
is

ψ∗g~Φ = e2λ(dx2
1 + dx2

2),

where eλ = |∂x1
(~Φ ◦ ψ)| = |∂x2

(~Φ ◦ ψ)|. The volume element is
given by

dvolg := e2λ dx1 ∧ dx2 .

Moreover, for the second fundamental form, we have

~Iij := ~I(∂xi, ∂xj) = π~n

(
∂xj∂xi(

~Φ ◦ ψ)
)
. (2.37)

Note that

〈∂2
x1

(~Φ ◦ ψ), ∂x1
(~Φ ◦ ψ)〉
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= ∂x1
〈∂x1

(~Φ ◦ ψ), ∂x1
(~Φ ◦ ψ)〉︸ ︷︷ ︸

=e2λ

−〈∂x1
(~Φ ◦ ψ), ∂2

x1
(~Φ ◦ ψ)〉

=
1

2
∂x1

(
e2λ
)

=
1

2
∂x1
〈∂x2

(~Φ ◦ ψ), ∂x2
(~Φ ◦ ψ)〉 (2.38)

= 〈∂x1
∂x2

(~Φ ◦ ψ), ∂x2
(~Φ ◦ ψ)〉

= ∂x2
〈∂x1

(~Φ ◦ ψ), ∂x2
(~Φ ◦ ψ)〉︸ ︷︷ ︸

=0

−〈∂2
x2

(~Φ ◦ ψ), ∂x1
(~Φ ◦ ψ)〉

= −〈∂2
x2

(~Φ ◦ ψ), ∂x1
(~Φ ◦ ψ)〉.

Similarly, one obtains that

〈∂2
x1

(~Φ ◦ ψ), ∂x2
(~Φ ◦ ψ)〉 = −〈∂2

x2
(~Φ ◦ ψ), ∂x2

(~Φ ◦ ψ)〉. (2.39)

(2.37), (2.38) and (2.39) together imply that

~I11 +~I22 = π~n

(
∆(~Φ ◦ ψ)

)
= ∆(~Φ ◦ ψ), (2.40)

where ∆ = ∂2
x1

+ ∂2
x2

denotes the negative flat Laplacian.
From expression (2.31) of the intrinsic negative Laplace-Bel-

trami operator ∆g in coordinates the following relation follows
immediately:

∆g = e−2λ∆. (2.41)

Using (2.40) and (2.41), the mean curvature vector takes the
following form:

~H =
1

2
tr(g−1 ~I) =

e−2λ

2

2∑
i,j=1

δij ~Iij =
e−2λ

2
∆(~Φ ◦ ψ) (2.42)
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=
1

2
∆g(~Φ ◦ ψ). (2.43)

The Willmore functional has therefore the expression

W (~Φ) =
1

4

∫
Σ

|∆g
~Φ|2 dvolg. (2.44)

Induced orthonormal moving frame. Given an isothermal chart
ψ : D2 → Σ for an immersion ~Φ: Σ → Rm, we can look at the
frame

(~e1, ~e2) = e−λ (∂x1
(~Φ ◦ ψ), ∂x2

(~Φ ◦ ψ)).

This realizes a tangent orthonormal moving frame, i.e. a map-
ping fromD2 to ~Φ∗(TD

2×TD2) such that at every (x1, x2) ∈ D2,
the pair (~e1, ~e2)(x1, x2) realizes a positive orthonormal basis of
~Φ∗(T(x1,x2)D

2).
A simple computation, similarly as the one in (2.38) shows

〈~e1,∇~e2〉 = −∇⊥λ. (2.45)

In particular it follows

div〈~e1,∇~e2〉 = 0. (2.46)

Note that this identity can be writen independently of the para-
metrization as

d∗g〈~e1, d~e2〉 = 0, (2.47)

which one refers to as the Coulomb condition. A frame (~e1, ~e2)
satisfying (2.47) is called a Coulomb frame.

The following identity of 2-forms on D2 holds:

d〈~e1, d~e2〉 = K dvolg, (2.48)
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where K is the Gauss curvature of (D2, g).
To see this, let ei be the vector field on D2 given by d~Φ(ei) =

~ei for i = 1, 2. Further, denote

Dei~ej := π~n(d~ej(ei)).

Then, using Cartan’s formula9, we obtain

d〈~e1, d~e2〉(e1, e2)

= d
(
〈~e1, d~e2(e2)〉

)
(e1)− d

(
〈~e1, d~e2(e1)〉

)
(e2)− 〈~e1, d~e2([e1, e2])〉

= 〈d~e1(e1), d~e2(e2)〉 − 〈d~e1(e2), d~e2(e1)〉
+〈~e1, d(d~e2(e2))(e1)〉 − 〈~e1, d (d~e2(e1)) (e2)〉 − 〈~e1, d~e2([e1, e2])〉︸ ︷︷ ︸

=〈~e1, ~R(~e1,~e2,~e2)〉=0

(∗)
= 〈De1

~e1, De2
~e2〉 − 〈De2

~e1, De1
~e2〉

= 〈~I(e1, e1),~I(e2, e2)〉 −
∣∣∣~I(e1, e2)

∣∣∣2
= K. (2.50)

In the last identity we have made use of the Gauss theorem
(2.22). By ~R we denote the Riemannian (3, 1)-curvature tensor
of the exterior differential d, the Levi-Civita connection associ-
ated to (Rm, 〈·, ·〉).

9The Cartan formula for the exterior differential of a 1-form α on a differentiable
manifolfd Mm says that for any pair of vector fields X,Y on this manifold the following
identity holds:

dα(X,Y ) = d(α(Y ))(X)− d(α(X))(Y )− α([X,Y ]), (2.49)

see Corollary 1.122 chapter I of [GHL04].
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In (∗) we used that

〈d~e1(e1), d~e2(e2)〉 = 〈De1
~e1, De2

~e2〉+ 〈∇e1
~e1,∇e2

~e2〉,

where the second summand vanishes, since ∇e1
~e1 (∇e2

~e2 resp.)
is oriented along ~e2 (~e1 resp.):

〈∇ei~ei, ~ei〉 = ei(〈~ei, ~ei〉︸ ︷︷ ︸
≡1

)− 〈∇ei~ei, ~ei〉 = 0,

for i = 1, 2. Similarly, one shows that

〈∇e1
~e2, ~e2〉 = 〈∇e2

~e1, ~e1〉 = 0

such that
〈∇e2

~e1,∇e1
~e2〉 = 0.

From (2.50), the claimed identity in (2.48) follows since

d〈~e1, d~e2〉 = d〈~e1, d~e2〉(e1, e2) e
∗
1 ∧ e∗2

and e∗1 ∧ e∗2 = dvolg.

Combining (2.45) and (2.48) gives

−∆λ = − ∗ d ∗ dλ = ∗d〈~e1, d~e2〉 = e2λK,

where ∆ denotes the negative flat Laplacian. Recall from Sec-
tion 2.1 that ∗dλ is the associated 1-form to ∇⊥λ.

The previous identity is the well-known expression of the
Gauss curvature in isothermal coordinates in terms of the con-
formal factor λ, called Liouville equation. We have proven the
following lemma.

Lemma 2.5. Let ~Φ: D2 → Rm be a conformal immersion with

|∂x1
~Φ| = |∂x2

~Φ| = eλ.
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Then
−∆λ = e2λK, (2.51)

where K is the Gauss curvature of (D2, ~Φ∗gRm) and ∆ is the

negative flat Laplacian on D2.

One easily obtains the following generalization.

Theorem 2.6. Let ~Φ: Σ → Rm be a smooth immersion and
g := ~Φ∗gRm the induced first fundamental form. Let h be a
conformally equivalent metric on Σ satisfying

g = e2αh.

Then
−∆hα = e2αKg −Kh, (2.52)

where Kg and Kh are the Gauss curvatures of (Σ, g) and (Σ, h)
respectively.

Proof of Theorem 2.6. In the next subsection we will show that
there exist isothermal coordinates for ~Φ, i.e. locally g is of the
form

g = e2λ(dx2
1 + dx2

2). (2.53)

Hence, we have
h = e2σ(dx2

1 + dx2
2), (2.54)

where σ := λ− α.
Then we can apply Lemma 2.5 to (2.53) and (2.54) respec-

tively and obtain
Kg = −e−2λ∆λ (2.55)

and
Kh = −e−2(λ−α)∆(λ− α) (2.56)
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Combining (2.55) and (2.56) yields

Kh = e2α
(
Kg + e−2λ∆α

)
= e2αKg + ∆hα,

where we used (2.41) in the last identity. This finishes the proof.

Finally, we want to take advantage of the fact that for a con-
formal immersion ~Φ from D2 into R3, (~e1, ~e2, ~n) is an orthonor-
mal frame of ~Φ∗(R3), where ~ei := e−λ ∂xi

~Φ and ~n is the Gauss
map of ~Φ. The following two lemmas dealing with conformal
immersions into the 3-dimensional space are easy consequences
of this.

Lemma 2.7. Let ~Φ: D2 → R3 be a conformal immersion. Then

K ~n = −e
−2λ

2
∇~n×∇⊥~n = −e

−2λ

2
div [~n×∇⊥~n], (2.57)

where K is the Gauss curvature of ~Φ.

Proof. Note that

∇~n×∇⊥~n = div [~n×∇⊥~n] = −2 ∂x1
~n× ∂x2

~n.

Since
〈∂x1

~n, ~n〉 = 〈∂x2
~n, ~n〉 = 0,

for proving (2.57), we have to show that

e2λK = |∂x1
~n× ∂x2

~n|. (2.58)

For the Gauss curvature, we can write

K :=
det
(
〈~n,~I(∂xi, ∂xj)〉

)
det(gij)

= e−2λ det (−〈∂xi~n,~ej〉) , (2.59)
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where ~ei := e−λ ∂xi
~Φ. The parallelogram spanned by ∂x1

~n and
∂x2
~n is contained in the tangent bundle, of which (~e1, ~e2) is an

orthonormal frame, hence we have

|∂x1
~n× ∂x2

~n| = det (〈∂xi~n,~ej〉) .

This, together with (2.59), implies (2.58) and thus the result.

Lemma 2.8. Let ~Φ: D2 → R3 be a conformal immersion. Then
the following identity holds:

−2H ∇~Φ = ∇~n+ ~n×∇⊥~n. (2.60)

Proof. Consider the tangent frame (~e1, ~e2), given by

~ei := e−λ ∂xi
~Φ,

where eλ = |∂x1
~Φ| = |∂x2

~Φ|. The oriented Gauss map ~n is given
by

~n = ~e1 × ~e2.

We have

〈~e1, ~n×∇⊥~n〉 = −〈∇⊥~n,~e2〉,

〈~e2, ~n×∇⊥~n〉 = 〈∇⊥~n,~e1〉.

From this we deduce −~n× ∂x2
~n = 〈∂x2

~n,~e2〉 ~e1 − 〈∂x2
~n,~e1〉 ~e2,

~n× ∂x1
~n = −〈∂x1

~n,~e2〉 ~e1 + 〈∂x1
~n,~e1〉 ~e2.

Thus, ∂x1
~n− ~n× ∂x2

~n = [〈∂x2
~n,~e2〉+ 〈∂x1

~n,~e1〉] ~e1,

∂x2
~n+ ~n× ∂x1

~n = [〈∂x2
~n,~e2〉+ 〈∂x1

~n,~e1〉] ~e2.

28



Since

H = −1

2
e−λ [〈∂x1

~n,~e1〉+ 〈∂x2
~n,~e2〉],

we deduce (2.60) and Lemma 2.8 is proven.

2.5 Existence of isothermal coordinates and the Chern
moving frame method

In this subsection we want to prove the existence of isothermal
coordinates for an immersion ~Φ of Σ into Rm. More precisely,
we show that for any p ∈ Σ there exists a neighborhood U of p
and a diffeomorphism ψ : D2 → U such that ψ is an isothermal
chart for ~Φ, i.e. satisfying (2.36).

By picking any chart ϕ : D2 → U around p, it suffices to prove
the following theorem, which can then be applied to ~Φ ◦ ϕ.

Theorem 2.9. Let ~Φ be an immersion of the disc D2 into Rm.
Then there exists a diffeomorphism ψ of D2 such that the map
~Φ ◦ ψ : D2 → Rm is conformal, i.e. satisfies (2.36).

To obtain this result we will make use of the Riemann map-
ping theorem (see for instance [Rud87], chapter 14), which we
want to recall now.

Theorem 2.10. If U ( C is non-empty, open and simply con-
nected, then there exists a biholomorphic mapping f from U onto
the open unit disk D2 = {z ∈ C : |z| < 1}.

In the last subsection we have seen how any isothermal chart
generates a Coulomb frame in the tangent bundle. S.S. Chern
observed that this is in fact an exact matching, the converse
being also true: starting from a Coulomb frame one can generate
isothermal coordinates. This is our strategy for the proof of
Theorem 2.9.
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Proof of Theorem 2.9. Let ~Φ: D2 → Rm be an immersion. We
are looking for a Coulomb tangent orthonormal moving frame
(~e1, ~e2): a tangent moving frame from D2 to ~Φ∗(TD

2 × TD2)
such that the Coulomb condition (2.47) is satisfied.

Note that the passage from an arbitrary tangent orthonormal
moving frame (~f1, ~f2) to another one (~e1, ~e2) is realized through
a change of gauge which corresponds to the action of an SO(2)
rotation eiθ on the tangent space ~Φ∗(T(x1,x2)D

2):

~e1 + i~e2 = eiθ (~f1 + i ~f2). (2.61)

One shows that the following gauge change formula holds:

〈~e1, d~e2〉 = 〈~f1, d ~f2〉+ dθ. (2.62)

Thus, construcing a Coulomb tangent orthonormal moving frame
is the same as finding the change of gauge θ ∈ W 1,2(D2) which
minimizes the energy∫

D2

∣∣∣dθ + 〈~f1, d ~f2〉
∣∣∣2
g
dvolg. (2.63)

In fact, there exists a unique minimum satisfying
d∗g
[
dθ + 〈~f1, d ~f2〉

]
= 0 in D2

ι∗∂D2

(
∗g
[
dθ + 〈~f1, d ~f2〉

])
= 0 on ∂D2,

where ι∂D2 is the canonical inclusion of ∂D2 into D2. Denote
by (~e1, ~e2) the corresponding Coulomb frame, i.e. the frame ob-
tained by ~e1 + i~e2 = eiθ(~f1 + i ~f2).

By Poincaré’s Lemma there exists λ satisfying
dλ = ∗g〈~e1, d~e2〉∫

∂D2

λ = 0.
(2.64)
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Denote moreover ei := d~Φ−1(~ei) and let (e∗1, e
∗
2) be the dual basis

to (e1, e2). The Cartan formula for the exterior differential of a
1-form implies

de∗i (e1, e2) = d(e∗i (e2))(e1)− d(e∗i (e1))(e2)− e∗i ([e1, e2])

= −e∗i ([e1, e2])

= −((~Φ−1)∗e∗i )([d
~Φ(e1), d~Φ(e2)])

= −((~Φ−1)∗e∗i )([~e1, ~e2]).
(2.65)

The Levi-Civita connection ∇ on ~Φ∗TD
2 is given by ∇X

~Y :=
πT (d~Y (X)) where πT is the orthogonal projection onto the tan-
gent plane. Since the Levi-Civita connection is torsion-free, we
have

[~e1, ~e2] = ∇e1
~e2 −∇e2

~e1 = πT (d~e2(e1)− d~e1(e2)). (2.66)

Since ~e1 and ~e2 have unit length, the tangential projection of d~e1

(resp. d~e2) are oriented along ~e2 (resp. ~e1). So we have πT (d~e2(e1)) = 〈d~e2, ~e1〉(e1) ~e1

πT (d~e1(e2)) = 〈d~e1, ~e2〉(e2) ~e2.
(2.67)

Combining (2.65), (2.66) and (2.67) gives then de∗1(e1, e2) = −〈d~e2, ~e1〉(e1)

de∗2(e1, e2) = 〈d~e1, ~e2〉(e2).
(2.68)

Equation (2.64) gives −〈d~e2, ~e1〉(e1) = ∗gdλ(e1) = −dλ(e2)

〈d~e1, ~e2〉(e2) = ∗gdλ(e2) = dλ(e1).
(2.69)
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Thus combining (2.68) and (2.69) yields de∗1 = −dλ(e2) e
∗
1 ∧ e∗2 = dλ ∧ e∗1

de∗2 = dλ(e1) e
∗
1 ∧ e∗2 = dλ ∧ e∗2.

(2.70)

We have thus finally proven that d
(
e−λe∗1

)
= 0

d
(
e−λe∗2

)
= 0.

(2.71)

Apply Poincaré’s Lemma and obtain functions φ1, φ2 with aver-
age 0 on the disc D2 such that

dφi := e−λe∗i . (2.72)

Note that (2.72) implies that φ is a local homeomorphism. We
can thus make the following local calculations envolving φ−1:
From (2.72) we have

∂yiφ
−1 = eλ◦φ

−1

ei

and consequently,

e−λ◦φ
−1

g(ej, ∂yiφ
−1) = e−λ◦φ

−1

e∗j(∂yiφ
−1) = δij.

This implies
g(∂yiφ

−1, ∂yjφ
−1) = e2λ◦φ−1

δij (2.73)

or in other words

〈∂yi(~Φ ◦ φ−1), ∂yj(
~Φ ◦ φ−1)〉 = e2λ◦φ−1

δij. (2.74)

This says in particular that there exists an open disc D2
ε around

0 on which φ is a homeomorphism (and thus a diffeomorphism)
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and such that ~Φ ◦ φ−1 : φ(D2
ε)→ Rm is a conformal immersion.

The Riemann Mapping theorem 2.10 gives the existence of a
biholomorphic diffeomorphism h from D2 into φ(D2

ε). Thus ~Φ ◦
φ−1 ◦h realizes a conformal immersion from D2 onto ~Φ(D2

ε) and
ψ̃ := φ−1 ◦ h is an isothermal chart.

We have been looking for a diffeomorphism ψ from D2 to D2

(not into D2
ε), though, such that ~Φ◦ψ is conformal. To construct

such a ψ, we will replace φ by its associated quasiconformal
homeomorphism f , introduced in Section 2.6: A computation
shows that (2.72) implies

〈∂xiφ, ∂xjφ〉 = 2e−2λgij =: hij. (2.75)

Note that we have

c−1(δij) ≤ (hij) ≤ c (δij). (2.76)

We can thus apply Corollary 2.16 to φ and deduce that there
exists a (quasiconformal) map f : D2 → C, homeomorphic onto
its image, such that g := φ ◦ f−1 : f(D2) → φ(D2) is a holo-
morphic function. Since φ is a local homeomorphism and f is a
homeomorphism, we have

∂zg 6= 0 on f(D2).

In particular g is conformal with

|∂y1
g| = |∂y2

g| = 1√
2
|∂zg|.

Note that the following computation is again a local one, which
is why we can use (2.74).

〈∂yi(~Φ ◦ f−1), ∂yj(
~Φ ◦ f−1)〉
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= 〈d(~Φ ◦ φ−1)(∂yig), d(~Φ ◦ φ−1)(∂yjg)〉

=
1

2
|∂zg|2〈∂yi(~Φ ◦ φ−1), ∂yj(

~Φ ◦ φ−1)〉

=
1

2
|∂zg|2e2λ◦φ−1

δij.

Applying the Riemann Mapping theorem 2.10 gives the exis-
tence of a biholomorphic diffeomorphism h from D2 into f(D2).
Thus ~Φ ◦ f−1 ◦ h realizes a conformal immersion from D2 onto
~Φ(D2) and ψ := f−1 ◦ h is the isothermal chart we have been
looking for.

2.6 Some facts on Riemann surfaces

This section collects some useful facts on Riemann surfaces that
we shall need during the course. We follow [Jos97] and [IT92]. In
the sequel, a surface denotes a 2-dimensional smooth manifold.

Definition 2.11. Let Σ be a surface. An atlas on Σ with charts
ϕi : D

2 → Ui ⊂ S is called conformal if the transition maps

ϕ−1
j ◦ ϕi : ϕ−1

i (Ui ∩ Uj) ⊂ C→ C

are biholomorphic. A maximal conformal atlas is called a con-
formal structure on S.

A Riemann surface is a surface together with a conformal
structure.

Recall Example i) in Section 2.3 and note that Definition 2.11
provides that the transition maps of a conformal atlas are confor-
mal and preserve orientation. In particular, a Riemann surface
is oriented.
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Remark 2.12. In other words, a Riemann surface is a complex
manifold of real dimension 2. Note that any holomorphic atlas
of a complex manifold M induces an almost complex structure
J on M , that is a section in End(TM) satisfying J2 = −1, via

J∂xi = ∂yi and J∂yi = −∂xi. (2.77)

Conversely, an almost complex structure J on an even-real-
dimensional manifold M is not necessarily integrable, i.e. the
differentiable structure of M cannot necessarily be defined by a
holomorphic atlas satisfying (2.77). However, this is true in
real dimension 2, such that any almost complex manifold of real
dimension 2 is in fact a Riemann surface.

Riemannian metrics and Beltrami coefficients.

Theorem 2.13. Let (Σ, g) be an oriented surface with a Rie-
mannian metric. Then (Σ, g) admits a conformal structure.

For proving Theorem 2.13, the goal is to find for each coor-
dinate neighborhood (Uj, (xj, yj)) from an atlas {(Uj, (xj, yj))}j
isothermal coordinates (uj, vj) for the Riemannian metric g such
that it is represented as

ρj
(
du2

j + dv2
j

)
, (2.78)

for ρj being some positive smooth function. Setting wj = uj +
ivj, the atlas {(Uj, wj)}j defines then a conformal structure on
Σ. Note that the Chern moving frame method, as used in the
proof of Theorem 2.9, is one way to find isothermal coordinates.

We want to give the rough idea of an alternative proof for
finding isothermal coordinates, which is related to Beltrami co-
efficients. If the Riemannian metric g is in local coordinates
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(U, (x, y)) given by

g11 dx
2 + 2g12 dxdy + g22 dy

2,

setting z = x+ iy yields the representation

σ|dz + µ dz|2, (2.79)

where

σ =
1

4

(
g11 + g22 + 2

√
g11g22 − g2

12

)
is a positive smooth function on U and

µ =
g11 − g22 + 2ig12

g11 + g22 + 2
√
g11g22 − g2

12

(2.80)

is a complex-valued smooth function with

‖µ‖L∞(U) < 1.

To find an isothermal coordinate w = u + iv, note that such
satisfies

ρ
(
du2 + dv2

)
= ρ |dw|2 = ρ |wz|2

∣∣∣∣dz +
wz̄
wz

dz̄

∣∣∣∣2 , (2.81)

using the notation from (2.78), i.e. ρ > 0 being a smooth func-
tion. Comparing (2.79) and (2.81), we deduce that an isothermal
coordinate is an (a.e.) diffeomorphic solution w to the Beltrami
differential equation

wz̄ = µwz, (2.82)

where µ with ‖µ‖L∞(U) < 1 is given by (2.80) and is called
the Beltrami coefficient induced by the Riemannian metric g.
The following theorem gives that (2.82) has a quasiconformal
solution for any Beltrami coefficient.
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Definition 2.14. A quasiconformal map f : C→ C is an orien-
tation-preserving homeomorphism of C

i) such that fz and fz̄ are in L1
loc(C);

ii) for which there exists a constant 0 ≤ k < 1 such that

|fz̄| ≤ k|fz| a.e. on C.

Theorem 2.15 (Existence of quasiconformal mappings with
complex dilation µ, [IT92], Theorem 4.30). Let µ ∈ L∞(C,C)
satisfy

‖µ‖L∞(C) < 1.

Then there exists a homeomorphism f : C → C which is a qua-
siconformal mapping of C with complex dilation µ, i.e.

fz̄ = µ fz.

f is uniquely determined by the normalization conditions

f(0) = 0, f(1) = 1, f(∞) = f(∞).

We are now in the position to fill the gap we left in the proof
of Theorem 2.9, using the existence of quasiconformal mappings
for arbitrary Beltrami coefficients. We first make the following
observation.

Given φ ∈ W 1,∞(D2,C), define

hij := 〈∂xiφ, ∂xjφ〉,

where 〈·, ·〉 denotes the canonical inner product in R2. If the
symmetric 2× 2-matrix h satisfies

c−1(δij) ≤ (hij) ≤ c (δij), (2.83)
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h = |dφ|2 defines a metric. From (2.79) and (2.80) we obtain

|dφ|2 = σ|dz + µdz̄|2, (2.84)

where
∂z̄φ

∂zφ
= µ =

h11 − h22 + 2ih12

h11 + h22 + 2
√
h11h22 − h2

12

. (2.85)

Recall that µ is a Beltrami coefficient with ‖µ‖L∞(D2) < 1.

Corollary 2.16. Let φ ∈ W 1,∞(D2,C) such that

hij := 〈∂xiφ, ∂xjφ〉
satisfies

c−1(δij) ≤ (hij) ≤ c (δij).

Let µ be the associated Beltrami coefficient, given by (2.85) and
f be the quasiconformal mapping with complex dilation µ (ex-
tended by 0 outside D2), given by Theorem 2.15.

Then φ ◦ f−1 : f(D2)→ φ(D2) is holomorphic.

Proof. In [IT92], Proposition 4.13, it is computed that the com-
plex dilation µf−1 is of the form

µf−1 = −
(
fz

fz
µf

)
◦ f−1.

Consequently,

∂z̄(φ ◦ f−1) = ∂wφ ◦ f−1 · (f−1)z̄ + ∂w̄φ ◦ f−1 · (f−1)z

= ∂wφ ◦ f−1 · µf−1 (f−1)z + (µf ∂wφ) ◦ f−1 · (f−1)z

= (µf ∂wφ) ◦ f−1

(
−fz
fz
◦ f−1 (f−1)z + (f−1)z

)
= 0

and thus φ ◦ f−1 : f(D2)→ C is holomorphic.
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The classification of Riemann surfaces.

Theorem 2.17 (Uniformization Theorem). Let Σ be a compact
Riemann surface of genus p. Then there exists a conformal dif-
feomorphism

Ψ: Σ→ Σ′,

where Σ′ is

i) a compact Riemann surface of the form H/Γ, where Γ is a
subgroup of PSL(2,R) acting freely and properly discontin-
uously on H, if p ≥ 2;

ii) a compact Riemann surface C/aZ + bZ, where a, b ∈ C, if
p = 1;

iii) the Riemann sphere S2, if p = 0.

A corollary of Theorem 2.17 is the following.

Theorem 2.18. Let Σ be a compact Riemann surface, where
the conformal structure is induced by the Riemannian metric g.
Then there exists a conformally equivalent Riemannian metric
h on Σ,

g = e2αh,

with

• constant (sectional) curvature Kh and

• unit volume: volh(Σ) = 1.

Such h is unique if the genus of the surface is larger than one.

Moreover, we have

Kh


< 0

= 0

> 0

if and only if genus(Σ)


≥ 2

= 1

= 0

.
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3 The space of weak immersion with L2-bounded

second fundamental form

3.1 Definition

Let Σ be a smooth 2-dimensional closed oriented manifold. Let
g0 be a smooth reference metric on Σ.

One defines the Sobolev spaces W k,p(Σ,Rm) of measurable
maps from Σ into Rm in the following way:

W k,p(Σ,Rm) =

{
f : Σ→ Rm ;

k∑
l=0

∫
Σ

|∇lf |pg0
dvolg0

< +∞

}
.

Since Σ is assumed to be closed, this space is independent of
the choice of g0: For any two smooth reference metrics g0 and
g1, one can find a constant c > 0 such that for all p ∈ Σ and
X ∈ TpM

c−1g0(X,X) ≤ g1(X,X) ≤ c g0(X,X). (3.1)

We now want to define a weak notion of immersions ~Φ: Σ→
Rm. We want

g~Φ(X, Y ) = 〈d~Φ(X), d~Φ(Y )〉

to define an L∞-metric on Σ.
Therefore, we require ~Φ: Σ → Rm to be a Lipschitz immer-

sion, i.e. a map satisfying

i)
~Φ ∈ W 1,∞(Σ,Rm),

ii) ∃c > 0 s.t. ∀p ∈ Σ, X ∈ TpM

c−1g0(X,X) ≤ g~Φ(X,X) ≤ c g0(X,X). (3.2)
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Condition ii) ensures the non-degeneracy of the metric g~Φ. Note
that this condition is again independent of the choice of g0, due
to (3.1).

For a Lipschitz immersion we can define the Gauss map as
the following measurable map in L∞(Σ), taking values in the
Grassmannian Grm−2(Rm) of oriented (m− 2)-planes in Rm:

~n~Φ := ?
∂x1

~Φ ∧ ∂x2
~Φ

|∂x1
~Φ ∧ ∂x2

~Φ|

for an arbitrary choice of local positive coordinates (x1, x2).

We say that a Lipschitz immersion ~Φ: Σ → Rm has L2-
bounded second fundamental form if

iii)
~n ∈ W 1,2(Σ, Grm−2(Rm))10.

In other words, condition iii) requires∫
Σ

|d~n|2g0
dvolg0

< +∞.

Summing up, we have the following definition.

Definition 3.1. The space EΣ of Lipschitz immersions with L2-
bounded second fundamental form is defined as

EΣ :=
{
~Φ: Σ→ Rm measurable s.t. i), ii) and iii) hold

}
.

10The Grassman manifold Grm−2(Rm) can be seen as being the submanifold of the
Euclidian space ∧m−2Rm of (m − 2)-vectors in Rm made of unit simple (m − 2)-vectors.
Then one defines

W 1,2(D2, Grm−2(Rm)) :=
{
~n ∈W 1,2(D2,∧m−2Rm) ; ~n ∈ Grm−2(Rm) a.e.

}
.
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Definition 3.2. For ~Φ ∈ EΣ, denote by

I(~Φ) :=

∫
Σ

|~I|2g~Φ dvolg~Φ =

∫
Σ

|d~n|2g~Φ dvolg~Φ (3.3)

the L2-norm of the second fundamental form of ~Φ.

Note that the identity in (3.3) holds by (2.29). Thus, I(~Φ)
can also be interpreted as the Dirichlet energy of the Gauss map
~n~Φ. Moreover, I(~Φ) is finite due to condition iii) in the definition
of EΣ.

3.2 Fundamental results on integrability by compen-
sation

3.2.1 Classical results from Calderon-Zygmund theory

Recall from classical Calderon-Zygmund theory the following
theorem.

Theorem 3.3. Let f ∈ L1(D2). Then there exists a unique
solution in W 1,1

0 (D2) of ∆φ = f in D2

φ = 0 on ∂D2
(3.4)

and φ ∈ W 1,p
0 (D2) for all p < 2, with

‖∇φ‖Lp(D2) ≤ Cp ‖f‖L1(D2).

One might ask to which optimal space beside
⋂
p<2 L

p(D2)
the function ∇φ belongs to. It certainly does not belong to
L2(D2): if this was true in general, this would also hold for the
Radon measure f = ∆ log r on D2. But

∇ log r =
1

r
∂r /∈ L2(D2).
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Observe, however, that 1
r is an element of the weak L2-space

L2,∞(D2) of measurable functions f : D2 → R such that

|f |L2,∞(D2) = sup
λ>0

{
λ
∣∣{x ∈ D2; |f(x)| > λ}

∣∣1/2} <∞.
The space (L2,∞, | · |L2,∞) is a quasi-Banach space, equivalent
to a Banach space. This means that the quasi-norm | · |L2,∞ is
equivalent to a norm ‖·‖L2,∞. We have the continuous embedding
L2 ⊂ L2,∞.11 Furthermore, it can be checked that, since D2 is a
bounded domain, for all p < 2,

Lp(D2) ⊂ L2,∞(D2) (3.5)

continuously.
One shows that (L2,∞, ‖ · ‖L2,∞) is the dual space to a space

named Lorentz space L2,1, which is made of measurable functions
f such that ∫ ∞

0

|{x; |f(x)| > λ}|1/2 dλ <∞.

See [Gra08] for further details and more material on weak Lp

and Lorentz spaces.
We have the following result.

Theorem 3.4. Let f ∈ L1(D2). Then for the unique solution φ
in W 1,1

0 (D2) of  ∆φ = f in D2

φ = 0 on ∂D2

11More generally, for p <∞ and Ω ⊂ Rn open, one defines Lp,∞(Ω) to be the space of
measurable functions f : Ω→ R such that

|f |Lp,∞(Ω) := sup
λ>0

{
λ |{x ∈ Ω; |f(x)| > λ}|1/p

}
<∞.

This space defines a quasi-Banach space for the quasi-norm | · |Lp,∞(Ω) and for 1 < p <∞
this quasi norm is equivalent to a norm. Lp(Ω) embeds continuously in Lp,∞(Ω).
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we have ∇φ ∈ L2,∞(D2) and

‖∇φ‖L2,∞(D2) ≤ C ‖f‖L1(D2).

Sketch of proof of Theorem 3.4. One checks that the gradient of
the Green’s function for D2 ([GT01], Chapter 2.5) satisfies

sup
y
‖|∇xK|(x, y)‖L2,∞

x (D2) <∞.

Since

∇φ(x) =

∫
D2

∇xK(x, y)f(y)dy, (3.6)

we have

‖∇φ‖L2,∞(D2) ≤
∥∥∥∥∫

D2

|∇xK(x, y)||f(y)|dy
∥∥∥∥
L2,∞(D2)

≤
∫
D2

‖∇xK(x, y)‖L2,∞
x (D2)|f(y)|dy

≤ sup
y
‖∇xK‖L2,∞

x (D2) ‖f‖L1(D2),

(3.7)

which is the result.

From this proof one also derives immediately the following:

Theorem 3.5. Let X = (X1, X2) be a vector field in L1(D2).
Then for the solution of ∆φ = divX in D2

φ = 0 on ∂D2,

we have φ ∈ L2,∞(D2) with

‖φ‖L2,∞(D2) ≤ C ‖X‖L1(D2).
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Indeed, we have

φ(x) =

∫
D2

K(x, y) divX dy

= −
∫
D2

∂x1
K(x, y) X1 + ∂x2

K(x, y) X2 dy

and the result follows as in (3.7).

Furthermore, one can proceed in a similar manner as in the
proof of Theorem 3.4 and use estimates of the gradient of the
Green’s function KΣ on a closed surface Σ ([Aub82], Chapter 4)
satisfying

∆xKΣ = δx=y −
1

volg0
(Σ)

,

to obtain the analog of Theorem 3.4 for a closed, oriented and
connected surface Σ.

Theorem 3.6. Let Σ be a closed, oriented and connected sur-
face. Let f ∈ L1(Σ) such that∫

Σ

f dvolg0
= 0.

Then there is a unique solution φ in W 1,1(Σ) of

∆φ = f in D′(Σ)

and it satisfies

‖∇φ‖L2,∞
g0 (Σ) ≤ Cg0

‖f‖L1
g0

(Σ).

One might also ask about the regularity of φ solving (3.4).
Combining Theorem 3.3 and the Sobolev embedding

W 1,p
0 (D2) ↪→ Lp

∗
(D2),

1

p∗
=

1

p
− 1

2
,
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one deduces that
φ ∈

⋂
q<∞

Lq(D2).

This is not fully optimal: Using the embedding

Ẇ 1,(2,∞)(R2) ↪→ BMO(R2),

where BMO(R2) is the John Nierenberg space of functions of
Bounded Mean Oscillation, one obtains that the extension of φ
by 0 is BMO. Note that

BMO(R2) ) L∞(R2),

where for instance log |x| ∈ BMO(R2) \ L∞(R2).

3.2.2 Wente’s integrability by compensation

In a famous work Henry Wente produced CMC tori immersed
in R3 and discovered some “improvement” in the integrablility
of φ, the solution to (3.4), as well as the one of ∇φ, when f is a
Jacobian of W 1,2-functions.

Theorem 3.7. [Wen69] Let a and b be two functions in W 1,2(D2),
and let φ be the unique solution in W 1,p

0 (D2) - for 1 ≤ p < 2 -
of the equation −∆φ = ∂x1

a ∂x2
b− ∂x1

b ∂x2
a in D2

φ = 0 on ∂D2.
(3.8)

Then φ belongs to C0 ∩W 1,2(D2) and

‖φ‖L∞(D2) + ‖∇φ‖L2(D2) ≤ C ‖∇a‖L2(D2) ‖∇b‖L2(D2). (3.9)

where C is a constant independent of a and b.
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Proof. We shall first assume that a and b are smooth, so as to
justify the various manipulations which we will need to perform.
The conclusion of the theorem for general a and b in W 1,2(D2)
may then be reached through a simple density argument. In this
fashion, we will obtain the continuity of φ being the uniform
limit of smooth functions.

Observe first that integration by parts and a simple applica-
tion of the Cauchy-Schwarz inequality yield the estimate∫

D2

|∇φ|2 = −
∫
D2

φ∆φ ≤ ‖φ‖∞ ‖∂xa ∂yb− ∂xb ∂ya‖1

≤ 2 ‖φ‖∞‖∇a‖2 ‖∇b‖2.

Accordingly, if φ lies in L∞(D2), then it automatically lies in
W 1,2(D2).

Step 1. Given two functions ã and b̃ in C∞0 (C), which is
dense in W 1,2(C), we first establish the estimate (3.9) for

φ̃ :=
1

2π
log

1

r
∗
[
∂xã ∂yb̃− ∂xb̃ ∂yã

]
. (3.10)

Owing to the translation-invariance, it suffices to show that

|φ̃(0)| ≤ C0 ‖∇ã‖L2(C) ‖∇b̃‖L2(C). (3.11)

We have

φ̃(0) = − 1

2π

∫
R2

log r ∂xã ∂yb̃− ∂xb̃ ∂yã

= − 1

2π

∫ 2π

0

∫ +∞

0

log r
∂

∂r

(
ã
∂b̃

∂θ

)
− ∂

∂θ

(
ã
∂b̃

∂r

)
dr dθ

=
1

2π

∫ 2π

0

∫ +∞

0

ã
∂b̃

∂θ

dr

r
dθ.
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Define ãr = 1
2π

∫ 2π

0 ã(r, θ)dθ, and since
∫ 2π

0
∂b̃
∂θ dθ = 0, there holds

φ̃(0) =
1

2π

∫ 2π

0

∫ +∞

0

[ã− ãr]
∂b̃

∂θ

dr

r
dθ.

Applying successively the Cauchy-Schwarz and Poincaré inequal-
ities on the circle S1, we obtain

|φ̃(0)| ≤ 1

2π

∫ +∞

0

dr

r

(∫ 2π

0

|ã− ãr|2
) 1

2

∫ 2π

0

∣∣∣∣∣∂b̃∂θ
∣∣∣∣∣
2
 1

2

≤ 1

2π

∫ +∞

0

dr

r

(∫ 2π

0

∣∣∣∣∂ã∂θ
∣∣∣∣2
) 1

2

∫ 2π

0

∣∣∣∣∣∂b̃∂θ
∣∣∣∣∣
2
 1

2

.

Inequality (3.11) may then be inferred from the latter by apply-
ing once more the Cauchy-Schwarz inequality.

Returning to the disk D2, we can extend a and b to C by
setting ã(z) = a( z

|z|2 ) (and b̃ similarly) outside of D2. Then

‖∇ã‖L2(C) = 2‖∇a‖L2(D2), ‖∇b̃‖L2(C) = 2‖∇b‖L2(D2). (3.12)

Let φ̃ be the function in (3.10). The difference φ − φ̃ satisfies
the equation  ∆(φ− φ̃) = 0 in D2

φ− φ̃ = −φ̃ on ∂D2.

The maximum principle and inequalities (3.11), (3.12) imply

‖φ− φ̃‖L∞(D2) ≤ ‖φ̃‖L∞(∂D2) ≤ C‖∇a‖L2(D2) ‖∇b‖L2(D2).

With the triangle inequality |‖φ‖∞ − ‖φ̃‖∞| ≤ ‖φ − φ̃‖∞ and
inequality (3.11) again, we reach the desired L∞-estimate of φ,
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and therefore, by the above discussion, the theorem is proved.

The following result, due to S. Chanillo and Y.Y. Li is a
generalization of Wente’s theorem 3.7.

Theorem 3.8 ([CL92]). Let a and b be two functions in W 1,2(D2).
Let (aij)1≤i,j≤2 be a 2×2 symmetric matrix-valued map in L∞(D2)
such that there exists C > 0 for which

C−1 |ξ|2 ≤ aij(x)ξiξj ≤ C |ξ|2

for all ξ = (ξ1, ξ2) ∈ R2 and all x ∈ D2.
Let ϕ be the solution in W 1,p(D2,R) for any 1 ≤ p < 2 of ∂xi

[
aij ∂xjλ

]
= ∂x1

a ∂x2
b− ∂x2

a ∂x1
b on D2

ϕ = 0 on ∂D2.

(3.13)
Then ϕ ∈ L∞∩W 1,2(D2,R) and there exists C > 0 independent
of a and b such that

‖ϕ‖L∞(D2) + ‖∇ϕ‖L2(D2) ≤ C ‖∇a‖L2(D2) ‖∇b‖L2(D2). (3.14)

3.2.3 Integrability by compensation on Riemann surfaces

Integration by compensation is natural in the framework of
surfaces. An example provides the following generalization of
Wente’s inequality to Riemann surfaces, due to Topping ([Top97])
and Ge ([Ge98]).

Theorem 3.9. Let (Σ, g) be a Riemann surface, a, b ∈ W 1,2(Σ)
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and φ the solution in W 1,p(Σ) - for 1 ≤ p < 2 - of
∗g∆gφ = da ∧ db on Σ

φ = 0 on ∂Σ, if ∂Σ 6= ∅

φ(p) = 0 at a certain p ∈ Σ, if ∂Σ = ∅.

(3.15)

Then φ belongs to W 1,2 ∩ C0(Σ) and satisfies

‖φ‖L∞(Σ) + ‖∇φ‖L2(Σ) ≤ C ‖∇a‖L2(Σ) ‖∇b‖L2(Σ), (3.16)

where C is a universal constant, not depending on Σ.

Note that the operator ∗g∆g in (3.15) as well as the norms
in (3.16) are conformally invariant (and thus it makes sense to
consider them on a Riemann surface).

3.2.4 Some more results in integrability by compensation

Theorem 3.10 ([Bet92], [Ge99]). Let a be such that ∇a ∈
L2,∞(D2). Let p ∈ (1,∞) and b ∈ W 1,p(D2). Then the W 1,1

0 (D2)-
solution φ of12 ∆φ = ∂x1

a ∂x2
b− ∂x2

a ∂x1
b in D2

φ = 0 on ∂D2

is in W 1,p
0 (D2) and

‖∇φ‖Lp(D2) ≤ C‖∇a‖L2,∞(D2)‖∇b‖Lp(D2).
12If p ≤ 2, the Jacobian ∂x1

a ∂x2
b− ∂x2

a ∂x1
b is understood in the weak sense

∂x1a ∂x2b− ∂x2a ∂x1b := div
[
a∇⊥b

]
.

Since ∇a ∈ L2,∞(D2) we have that a ∈ Lq(D2) for all q <∞ and hence a∇⊥b ∈ Lr(D2)
for all r < p.

51



4 Existence of isothermal coordinates in the

weak framework

Given a Lipschitz immersion ~Φ ∈ EΣ with L2-bounded second
fundamental form, we want to show the existence of isothermal
coordinates for ~Φ:

For all p ∈ Σ there exists a neighborhood U of p and a bi-
Lipschitz diffeomorphism ψ : D2 → U such that ψ is a (weakly)
isothermal chart for ~Φ, i.e. satisfying 〈∂x1

(~Φ ◦ ψ), ∂x2
(~Φ ◦ ψ)〉 = 0 a.e. in D2

|∂x1
(~Φ ◦ ψ)| = |∂x2

(~Φ ◦ ψ)| a.e. in D2.
(4.1)

In the proof of Theorem 2.9 we presented the Chern moving
frame method in order to show the existence of isothermal coor-
dinates in the smooth case. We now want to apply this method
in the context of Lipschitz immersions with L2-bounded second
fundamental form and prove the following analogon, where we
require an additional energy restriction:

Lemma 4.1. Let ~Φ ∈ ED2 such that∫
D2

|∇~n~Φ|
2dx1dx2 <

8π

3
. (4.2)

Then there exists a homeomorphism ψ of D2, locally bi-Lipschitz,
such that the map ~Φ ◦ψ : D2 → Rm is conformal, i.e. it satisfies
(4.1).

To prove Lemma 4.1 we construct a local Coulomb tangent
moving frame with controlled W 1,2-energy. We shall do so in
two steps: In subsection 4.1 we will explore that under assump-
tion (4.2) it is possible to ”lift” the Gauss map and to construct

52



a tangent moving frame with bounded W 1,2-energy. After that,
in subsection 4.2, we will show how to turn the latter into a
Coulomb frame with controlled energy.

Finally, in subsection 4.3, we will see that, by means of a
result on integrability by compensation, we can use the Chern
moving frame method also in the weak framework and conclude
Lemma 4.1.

4.1 Hélein’s energy controlled lifting theorem

The following lifting theorem was proven by F. Hélein in
[Hél02].

Theorem 4.2. Let ~n ∈ W 1,2(D2, Grm−2(Rm)).
Then there exists a constant C > 0, such that, if one assumes

that ∫
D2

|∇~n|2 dx1dx2 <
8π

3
, (4.3)

then there exist ~e1, ~e2 ∈ W 1,2(D2, Sm−1) such that

~n = ?(~e1 ∧ ~e2)
13, (4.4)

and ∫
D2

2∑
i=1

|∇~ei|2 dx1 dx2 ≤ C

∫
D2

|∇~n|2 dx1, dx2. (4.5)

13Condition (4.4), together with the facts that the ~ei are Sm−1-valued and ~n has norm
one, implies that ~e1 and ~e2 are orthogonal to each other.
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4.2 Construction of local Coulomb frames with con-
trolled W 1,2-energy

Proof of Theorem 4.1. Let ~Φ ∈ ED2 satisfy (4.2). Due to Theo-
rem 4.2, there exists a frame

(~f1, ~f2) ∈ W 1,2(D2, Sm−1)2 (4.6)

with controlled energy. Consequently, one can proceed as in the
proof of Theorem 2.9 and look for the minimizer of∫

D2

∣∣∣dθ + 〈~f1, d ~f2〉
∣∣∣2
g
dvolg,

among all θ ∈ W 1,2(D2,R), in order to produce a Coulomb
frame on D2. This Lagrangian is convex on the Hilbert space
W 1,2(D2,R) and goes to +∞ as ‖θ‖W 1,2 → +∞. Then there
exists a unique minimum satisfying

d∗g
[
dθ + 〈~f1, d ~f2〉

]
= 0 in D2

ι∗∂D2

(
∗g
[
dθ + 〈~f1, d ~f2〉

])
= 0 on ∂D2,

where ι∂D2 is the canonical inclusion of ∂D2 into D2. Then
~e := ~e1 + i~e2 given by

~e = eiθ ~f (4.7)

is Coulomb, as desired: d∗g [〈~e1, d~e2〉] = 0 in D2

ι∗∂D2 (∗g [〈~e1, d~e2〉]) = 0 on ∂D2.
(4.8)
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4.3 The Chern moving frame method in the weak frame-
work

With a Coulomb frame (~e1, ~e2) satisfying (4.8) at hand, we are
now in the position to apply the Chern moving frame method
from 2.5. This however has to be done with the additional diffi-
culty of keeping track of the regularity of the different actors at
each step of the construction.

By the weak Poincaré Lemma, there exists λ ∈ W 1,2(D2)
satisfying 

dλ = ∗g〈~e1, d~e2〉∫
∂D2

λ = 0.
(4.9)

The second equation of (4.8) implies that the restriction to
∂D2 of the 1-form dλ is equal to zero. Hence this last fact
combined with the second equation of (4.9) implies that λ is
identically equal to zero on ∂D2. With the notation introduced
in Section 2.1, observe that

d〈~e1, d~e2〉 = 〈d~e1, d~e2〉 = 〈d~f1, d ~f2〉, (4.10)

by (4.7) and the change of gauge formula (2.61). We have then d ∗g dλ = −〈d~f1, d ~f2〉 on D2

λ = 0 on ∂D2.
(4.11)

In the canonical coordinates of D2, this reads as
∂xi

[√
det (gij)g

ij∂xjλ
]

= 〈∂x1
~f1, ∂x2

~f2〉 − 〈∂x2
~f1, ∂x1

~f2〉
on D2

λ = 0 on ∂D2.
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Since

〈∂x1
~f1, ∂x2

~f2〉−〈∂x2
~f1, ∂x1

~f2〉 =
m∑
j=1

∂x1
f1,j ·∂x2

f2,j−∂x2
f1,j ·∂x1

f2,j

is a sum of Jacobians of W 1,2-functions, due to (4.6), we are now
in the position to make use of Theorem 3.8, a generalization of
Wente’s theorem on integrability by compensation. It gives us
that

λ ∈ L∞(D2,R). (4.12)

Let (f1, f2) be the frame on D2 given by

d~Φ(fi) = ~fi, i = 1, 2.

An easy computation shows that its dual frame satisfies

f ∗i =
2∑

k=1

〈~ei, ∂xk~Φ〉 dxk ∈ L∞(D2), (4.13)

for i = 1, 2. Denote by (e1, e2) the frame on D2 such that

d~Φ(ei) = ~ei.

By (4.7), we have

e∗ = e∗1 + ie∗2 = e−iθ (f ∗1 + if ∗2 )

which is in L∞(D2) due to (4.13). From the proof of Theorem 2.9
follows that

d(e−λe∗i ) = 0 in D′(D2).

Applying the weak Poincaré Lemma gives a map φ = (φ1, φ2)
satisfying

dφi := e−λe∗i .
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Exactly as in the proof of Theorem 2.9, using Corollary 2.16,
one shows that there exists a homeomorphism ψ of D2, locally
bi-Lipschitz, realizing an isothermal chart for ~Φ (i.e. satisfying
(4.1)).

Lemma 4.1 immediately implies the following theorem.

Theorem 4.3. [Existence of isothermal coordinates]
Let ~Φ ∈ EΣ. Then for each p ∈ Σ there exists a neighborhood

U and a Lipschitz diffeomorphism ψ from D2 into U such that
ψ is an isothermal chart for ~Φ, i.e. satisfying (4.1).

Proof of Theorem 4.3. Let p ∈ Σ be an arbitrary point. Choose
any chart ϕ : D2 → U around p ∈ U . Due to condition iii), we
can assume that ∫

D2

|d~n~Φ◦ϕ|
2dx1dx2 <

8π

3
,

possibly after restricting ϕ to a sufficiently small neighborhood
of ϕ−1(p) = 0. Thus, ~Φ ◦ ϕ ∈ ED2 satisfies the assumptions of
Lemma 4.1, which then gives us a bi-Lipschitz diffeomorphism
ψ of D2

1/2 such that ~Φ ◦ ϕ ◦ ψ is conformal. ϕ ◦ ψ is the desired
isothermal chart around p.

Corollary 4.4. [Existence of a smooth conformal struc-
ture] Let Σ be a closed smooth 2-dimensional manifold. Then
any ~Φ ∈ EΣ defines a smooth conformal structure on Σ. In par-
ticular there exists a constant curvature metric h of unit volume
on Σ and a Lipschitz diffeomorphism Ψ of Σ such that ~Φ ◦ Ψ
realizes a conformal immersion of the Riemann surface (Σ, h)
and h and g~Φ are conformally equivalent.
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Definition 4.5. If h is a conformal structure on Σ, a map
~ξ : (Σ, h)→ R is called (weakly) conformal if it satisfies 〈∂x1

~ξ, ∂x2
~ξ〉 = 0 a.e. in Σ

|∂x1
~ξ| = |∂x2

~ξ| a.e. in Σ.

Proof of Corollary 4.4. Σ can be covered by finitely many isother-
mal charts (Ui, ψi)i=1,...,n, due to Theorem 4.3 and the fact that

Σ is compact. For each i = 1, . . . , n, the map ~Φ ◦ ψi realizes a
conformal Lipschitz immersion of D2, denoted by

ψ∗i g~Φ = e2λi(dx1 + dx2).

If Ui∩Uj 6= ∅, the map ψ−1
j ◦ψi : ψ−1

i (Ui∩Uj)→ C is conformal
and positive (hence holomorphic) almost everywhere:

(ψ−1
j ◦ ψi)∗(dy1 + dy2) = ψ∗i (e

−2λjg~Φ) = e2(λi−λj)(dx1 + dx2).

It follows that ψ−1
j ◦ ψi is harmonic on Ui ∩ Uj. From standard

distribution theory follows that it is holomorphic everywhere on
Ui ∩ Uj. Thus, the system of charts (Ui, ψi) defines a smooth
conformal structure c on Σ.

The second statement follows from Theorem 2.18.
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5 Sequences of weak immersions

5.1 Compactness question

Eventually we will be interested in finding a minimizer of the
Willmore energy. More specifically, we will look at a minimiz-
ing sequence of weak immersions with L2-bounded second fun-
damental form and ask if it has a limit with respect to some
notion of weak convergence and how this limiting object looks
like.

Recall that in Section 2.3 we showed that the Willmore energy
is invariant under conformal transformations in the target. To
get an idea what kind of convergence is the best we can hope
for, let us study an example: Assume ~Φ ∈ EΣ immerses a torus
in R3. Figures 1,2 and 3 show that composing ~Φ with sequences
of conformal diffeomorphisms of R3 of different types produces
sequences ~Φk, whose limit does not immerse a torus anymore.

Here, for a ∈ Rm, the map ia ∈ Conf(R3 ∪ {∞}) denotes the
inversion at a,

ia : x 7→ x− a
|x− a|2

.

Note that ia is a diffeomorphism from BR(a)\Bε(a) to B1/ε(a)\

00 0

Figure 1: Dilation. ~Φk := k~Φ. (Loss of energy and topology.)
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00 0

Figure 2: Inversion. ~Φk := iak ◦ ~Φ, where ak → ~Φ(Σ) \ {0}. (Loss of energy.)

phik

0 00

Figure 3: Inversion ◦ Dilation. ~Φk := dist(ak, ~Φ(Σ)) iak ◦ ~Φ, where ak →
~Φ(Σ) \ {0}. (Loss of energy and topology.)

B1/R(a) for any 0 < ε < R <∞ and thus, for a ∈ Rm \ ~Φ(Σ),

W (ia ◦ ~Φ) = W (~Φ).

These examples illustrate that, given a sequence ~Φk ∈ EΣ,
say with supk I(~Φk) < ∞, we cannot expect that ~Φk has a
limit, which still immerses the surface Σ (in a weak sense).
In fact, we need to compose with conformal transformations
~Ξk ∈ Conf(Rm ∪ {∞}) (with the center of inversion of ~Ξk not
being contained in ~Φk(Σ)) to avoid degeneracies as shown in
Figures 1 - 3.
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Furthermore, when passing to the limit there might be energy
concentration in single points. Figure 4 provides an example of
how such a loss of energy in the limit might occur.

To allow composing with conformal transformations along the
sequence in order to obtain a reasonable (weak) limiting object
is not enough: We also need to make a compactness assumption
on the conformal classes induced by ~Φk. Let Ψk : (Σ, hk) → Σ
be the Lipschitz diffeomorphisms from Corollary 4.4 such that

~Ψk := ~Φk ◦Ψk : (Σ, hk)→ Rm

are conformal, where each hk denotes the reference metric of
constant curvature and unit volume of the conformal structure
induced by ~Φk. Since Ψk are elements of the invariance group
Diff+(Σ) of the Willmore functional, we have W (~Ψk) = W (~Φk).
We make the following compactness assumption (CA):

The conformal classes (Σ, hk) are contained in a compact
subset of MΣ, the moduli space of Σ.

This assumption is necessary for the following reason: If the
conformal classes degenerate, we might not only lose energy but
also topology in the limit, which is irreversible and has to be
avoided. Such a situation is shown in Figure 5. Note that there

inversion−−−−−→

Figure 4: Loss of energy, no loss of topology.
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−→

Figure 5: Loss of energy, topology and conformal class.

is no way to preserve the genus in the limit: One can “save” one
hole (e.g. by applying dilations and inversions as in Figure 3),
but one will lose the other two ones at the same time.

Before using the previous observations to define a notion of
weak convergence, we note the following fact:

If a sequence of ~Φk ∈ EΣ satisfies the compactness assumption
(CA), the conformal classes (Σ, hk) of constant curvature and
unit volume, induced by ~Φk resp., satisfy (up to subsequences)

hk → h∞ in C l(Σ) ∀l ∈ N,

where (Σ, h∞) is the limiting conformal structure of constant
curvature and unit volume.

Definition 5.1. A sequence ~Φk ∈ EΣ satisfying assumption
(CA) with hk → h∞ is called weakly convergent if there exist
Lipschitz diffeomorphisms Ψk of Σ, conformal transformations
~Ξk of Rm ∪ {∞} with

~Φk(Σ) ∩ {center of inversion of ~Ξk} = ∅

and finitely many points a1, . . . , aN ∈ Σ, called blow-up points
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such that
~ξk := ~Ξk ◦ ~Φk ◦Ψk : (Σ, hk)→ Rm

is conformal, and there exists a map ~ξ∞ : Σ→ Rm such that

i)
~ξ∞ is conformal from (Σ, h∞) into Rm;

ii)

~ξk ⇀ ~ξ∞ weakly in W 2,2
loc (Σ \ {a1, . . . , aN}), (5.1)

iii)

log |d~ξk|2 ⇀ log |d~ξ∞|2 weakly in (L∞)∗loc(Σ\{a1, . . . , aN});
(5.2)

iv)
~ξk ⇀ ~ξ∞ weakly in W 1,2 ∩ (L∞)∗(Σ). (5.3)

The following lemma shows that the Willmore functional W
and the energy functional I are lower semicontinuous under weak
convergence.

Lemma 5.2. Let (Σ, hk) be a sequence of conformal structures
on Σ, where hk denotes the associated metric of constant cur-
vature and unit volume. Assume it satisfies assumption (CA),
with hk → h∞.

Let ~ξk : (Σ, hk)→ Rm be a sequence of conformal maps in EΣ

with
sup
k

I(~ξk) <∞ (5.4)

and ~ξ∞ : (Σ, h∞) → Rm a conformal map such that ii) and iii)
from Definition 5.1 are satisfied, i.e. there exist a1, . . . , aN ∈ Σ
such that

~ξk ⇀ ~ξ∞ weakly in W 2,2
loc (Σ \ {a1, . . . , aN}) (5.5)
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and

log |d~ξk|2 ⇀ log |d~ξ∞|2 weakly in (L∞)∗loc(Σ \ {a1, . . . , aN}).
(5.6)

Then for any K b Σ \ {a1, . . . , aN}, we have∫
K

| ~H~ξ∞
|2dvolg∞ ≤ lim inf

k

∫
K

| ~H~ξk
|2dvolgk (5.7)

and ∫
K

|d~n~ξ∞|
2
g∞
dvolg∞ ≤ lim inf

k

∫
K

|d~n~ξk|
2
gk
dvolgk. (5.8)

Proof. Since the ~ξk’s are conformal, the mean curvature vector
in isothermal coordinates can be written as

~H~ξk
=

1

2
e−2λk∆~ξk,

where λk := log |∂x1
~ξk|.

Let K b Σ \ {a1, . . . , aN} be compact. Note that, due to
(5.5),

∆~ξk ⇀ ∆~ξ∞ weakly in L2(K). (5.9)

Moreover, using again (5.5) and applying Rellich/Kondrachov,
we obtain for all 1 < p <∞ a subsequence such that

∂x1
~ξk′ → ∂x1

~ξ∞ strongly in Lp(K).

(5.6) ensures that |∂x1
~ξk| ≥ C a.e. for C > 0 independent of k.

Thus, we have

e−λk′ =
1

|∂x1
~ξk′|
→ 1

|∂x1
~ξ∞|

= e−λ∞ strongly in Lp(K).
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This, together with (5.9), implies

~H~ξk′

√
volgk′ =

1

2
e−λk′∆~ξk′ →

1

2
e−λ∞∆~ξ∞ = ~H~ξ∞

√
volg∞

in D′(K). (5.10)

But note that ∆~ξk′ is uniformly bounded in L2(K), due to (5.5),
and e−λk′ is uniformly bounded in L∞(K), due to (5.6). It fol-
lows that ~H~ξk′

√
volgk′ is uniformly bounded in L2(K) and con-

sequently, the convergence in (5.10) is a weak convergence in
L2(K). Lower semicontinuity of the L2-norm under weak L2-
convergence implies the desired result.

To prove (5.8), note that, by hk → h∞, (5.4) implies that

sup
k

∫
Σ

|d~n~ξk|
2
h∞
dvolh∞ <∞.

Thus, up to subsequences, there exists ~n∞ ∈ W 1,2(Σ) such that

~n~ξk′
⇀ ~n∞ weakly in W 1,2(Σ).

We will show that ~n∞ equals ~n~ξ∞ on any compact set K b
Σ \ {a1, . . . , aN}, which in turn implies (5.8), by lower semicon-
tinuity of weak W 1,2-convergence and hk → h∞ again.

Given any p < ∞, we have, modulo extraction of a subse-
quence, strong convergence ~n~ξk′

→ ~n∞ in Lp(Σ), by Rellich/Kon-

drachov for compact manifolds (see [Aub82], Theorem 2.34).
After passing to a further subsequence, we can assume that

~n~ξk′
→ ~n∞ a.e. in Σ. (5.11)

Note that in isothermal coordinates, we have

~n~ξk′
= e−2λk′ ?

(
∂x1

~ξk′ ∧ ∂x2
~ξk′
)
. (5.12)
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Applying Rellich/ Kondrachov, (5.5) implies that for any p <∞,
there is a further subsequence such that

d~ξk′ → d~ξ∞ strongly in Lp(K).

By passing to a further subsequence, we obtain

d~ξk′ → d~ξ∞ a.e. in K.

This implies in particular that

?
(
∂x1

~ξk′ ∧ ∂x2
~ξk′
)
→ ?

(
∂x1

~ξ∞ ∧ ∂x2
~ξ∞

)
a.e. in K. (5.13)

Observe that supk′ ‖λk′‖W 1,2(K) ≤ C, due to

|∇λk′| =
∣∣∣∣∇ log

(
1√
2
|∇~ξk′|

)∣∣∣∣ ≤ C +
|∇2~ξk′|
|∇~ξk′|

,

(5.5) and (5.6), which implies supk |∇~ξk′| ≥ c > 0. Conse-
quently, we can assume that

λk′ → λ∞ in Lp(K) and a.e. in K, (5.14)

after extraction of subsequences. (5.12), (5.14) and (5.13) imply
that

~n~ξk′
→ e−2λ∞ ?

(
∂x1

~ξ∞ ∧ ∂x2
~ξ∞

)
︸ ︷︷ ︸

=~n~ξ∞

a.e. in K.

(5.11), together with uniqueness of the limit, gives the desired
result that ~n~ξ∞ and ~n∞ coincide on K.

Theorem 5.3 (Weak almost-closure theorem). Let ~Φk ∈ EΣ

such that
sup
k

I(~Φk) <∞ (5.15)
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and such that assumption (CA) is satisfied.

Then there exists a weakly converging subsequence of ~Φk (in
the sense of Definition 5.1).

In the next two subsections we shall prepare the proof of
Theorem 5.3, which will be finally given in Subsection 5.4.

5.2 Control of the conformal factor

Let ~Φk ∈ EΣ be a sequence of weak immersions. Corollary 4.4
tells us how to fix a gauge, namely one can find Lipschitz dif-
feomorphisms Ψk : (Σ, hk)→ Σ such that

~Ψk := ~Φk ◦Ψk : (Σ, hk)→ Rm

are conformal, where each hk denotes the reference metric of
constant curvature and unit volume of the conformal structure
induced by ~Φk. Denote

g~Φk = e2αkhk.

A priori the conformal factors e2αk could go either to +∞ or 0 as
k →∞. In both cases, the limiting map will not be an element
of EΣ, in the first case failing the Lipschitz condition and in
the second case failing the non-degeneracy of the metric. The
question that we want to investigate now is therefore: Can the
logarithms of the conformal factors, that are αk, be controlled
in the L∞-norm by supk I(~Φk), when we let k →∞?

The first result is a global bound for αk in the L2,∞(Σ)-norm.

Theorem 5.4. Let ~Φk ∈ EΣ be a sequence of Lipschitz immer-
sions with L2-bounded second fundamental form such that

sup
k

I(~Φk) <∞.
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Let Ψk be Lipschitz diffeomorphisms of Σ such that

~Ψk := ~Φk ◦Ψk : (Σ, hk)→ Rm

are conformal, where each hk denotes the reference metric of
constant curvature and unit volume of the conformal structure
induced by ~Φk. Furthermore, we make assumption (CA), that is
the conformal classes (Σ, hk) are contained in a compact subset
of MΣ.

Denote gk := ~Φ∗kgRm and

gk = e2αkhk.

Then

sup
k
‖dαk‖L2,∞(Σ) <∞.

Proof. Since gk = e2αkhk, by (2.52), we have for all k ∈ N

−∆hkαk = e2αkKgk −Khk. (5.16)

This identity, together with (2.23), gives us the following es-
timate for ∆hkαk in L1

hk
(Σ):∫

Σ

|∆hkαk| dvolhk ≤
∫

Σ

e2αk|Kgk|dvolhk +

∫
Σ

|Khk|dvolhk

=

∫
Σ

|Kgk|dvolgk + |Khk| ≤
1

2

∫
Σ

|~I~Φk|
2
gk
dvolgk + |Khk| (5.17)

≤ 1

2
sup
k

I(~Φk) + C =: C̃,
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where we used that we chose hk to be the constant curvature
metric of unit volume and hk → h∞. Since c−1

k g0 ≤ hk ≤ ckg0

and due to hk → h∞, (5.17) gives also the estimate

‖∆hkαk‖L1
g0

(Σ) ≤ Ĉ

for all k ∈ N. Applying Theorem 3.6 yields thus the desired
uniform bound for dαk in L2,∞(Σ):

‖dαk‖L2,∞
g0 (Σ) ≤ Cg0

‖∆hkαk‖L1
g0

(Σ) ≤ Cg0
· Ĉ. (5.18)

We now shall investigate the evolvement of the logarithms of
the conformal factors in the L∞-norm. This is done locally,
wherever the second fundamental form does not concentrate
“too much energy”.

Theorem 5.5. Let ~Φk ∈ EΣ be a sequence in EΣ which satisfies

sup
k

I(~Φk) <∞.

Furthermore, we make assumption (CA): the conformal classes
(Σ, hk) are contained in a compact subset of the moduli space of
Σ. As before, let Ψk be Lipschitz diffeomorphisms of Σ such that

~Ψk := ~Φk ◦Ψk : (Σ, hk)→ Rm

are conformal, where each hk denotes the reference metric of
constant curvature and unit volume of the conformal structure
induced by ~Φk.

Moreover, let ϕk be a sequence of isothermal charts satisfying

sup
k

∫
D2

|∇~n~Ψk◦ϕk|
2dx1dx2 <

8π

3
. (5.19)

70



Denote
(~Ψk ◦ ϕk)∗gRm = e2λk(dx2

1 + dx2
2).

Then there exist constants ck ∈ R such that

sup
k
‖λk − ck‖L∞(Ω) ≤ CΩ, (5.20)

for any set Ω b D2.

The following example shows that in general we cannot con-
trol the λk in L∞ when deleting the constants ck in (5.20):
Compose the weak immersions ~Ψk with dilations sk· in Rm, for
some sk ∈ R. Due to the conformal invariance of the Willmore
functional, we have I(~Ψk) = I(sk~Ψk). In contrast, the dilations
are reflected in the logarithms of the conformal factors, that is
λsk~Ψk

= λ~Ψk
+ log sk.

Note that this example also shows that the constants ck are
a priori not controlled, when k →∞.

Proof of Theorem 5.5. Assuming (5.19), for each k ∈ N, we can
apply Hélein’s lifting theorem 4.2 to obtain the existence of ~fk1
and ~fk2 in W 1,2(D2, Sm−1) such that

~nk := ~n~Ψk◦ϕk = ?(~fk1 ∧ ~fk2 ),

and ∫
D2

2∑
i=1

|∇~fki |2 dx1 dx2 ≤ C

∫
D2

|∇~nk|2 dx1dx2,

where ~nk := ~n~Ψk◦ϕk.
Using the notation introduced in Section 2.1, the factors λk

satisfy the following equation:

∆λk = −〈∇⊥ ~fk1 ,∇~fk2 〉. (5.21)
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This can seen by observing that, by (2.45), the latter equation
holds for the frame (~fk1 ,

~fk2 ) being replaced by the frame (~ek1, ~e
k
2)

given by
~eki := e−λk∂xi(

~Ψk ◦ ϕk).
Furthermore, the change of gauge formula (2.62) leaves the right
hand side of (5.21) invariant. Observe that the right hand side
of (5.21) is a sum of Jacobians, more specifically

−〈∇⊥ ~fk1 ,∇~fk2 〉 = 〈∂x2
~fk1 , ∂x1

~fk2 〉 − 〈∂x1
~fk1 , ∂x2

~fk2 〉

=
m∑
j=1

∂x2
fk1,j · ∂x1

fk2,j − ∂x1
fk1,j · ∂x2

fk2,j.

Let µk be the solution to ∆µk =
∑m

j=1 ∂x2
fk1,j · ∂x1

fk2,j − ∂x1
fk1,j · ∂x2

fk2,j on D2

µk = 0 on ∂D2.

Wente’s Theorem 3.8 gives us the estimate

‖∇µk‖L2(D2) + ‖µk‖L∞(D2)

≤ C

m∑
j=1

∫
D2

(
|∇fk1,j|2 + |∇fk2,j|2

)
dx1dx2 (5.22)

≤ C

∫
D2

|∇~nk|2dx1dx2 ≤ C,

where we used (5.19) in the last step such that the constant C
is independent of k.
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We now consider the harmonic rest νk := λk − µk. Due to
Theorem 5.4, which gives a global estimate of dαk in L2,∞(Σ),
and the strong convergence hk → h∞, we have a uniform bound

sup
k
‖∇λk‖L2,∞(D2) ≤ C.

Together with (5.22) (and the fact that L2 ↪→ L2,∞ continu-
ously), this yields νk ∈ L2,∞(D2) and

sup
k
‖∇νk‖L2,∞(D2) ≤ C.

From (3.5), we know that

‖∇νk‖Lp(D2) ≤ Cp ‖∇νk‖L2,∞(D2)

for all p < 2. Applying Poincaré’s inequality yields

‖νk − ν̄k‖Lp(D2) ≤ Cp ‖∇νk‖Lp(D2),

where ν̄k denotes the average of νk on D2.
Since W 1,p(D2) ↪→ W 1− 1

p ,p(∂D2) ↪→ L1(∂D2), we obtain

sup
k
‖νk − ν̄k‖L1(∂D2) ≤ C.

Using the Poisson representation formula for harmonic functions
on D2 yields

‖νk − ν̄k‖C1(Ω) ≤ CΩ ‖νk − ν̄k‖L1(∂D2)

for any Ω b D2 and thus

sup
k
‖νk − ν̄k‖L∞(Ω) ≤ C̃Ω.

Combining this result with (5.22) gives us

sup
k
‖λk − ck‖L∞(Ω) ≤ ĈΩ,

for any set Ω b D2, where ck := ν̄k.
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5.3 The monotonicity formula and consequences

As always, let Σ be a smooth closed oriented surface. The fol-
lowing lemma is a corollary of Simon’s monotonicity formula.

Lemma 5.6 (Simon’s Monotonicity formula). Let ~Φ ∈ EΣ be a
Lipschitz immersion with L2-bounded second fundamental form.
Denote by M := ~Φ(Σ) the immersed surface.

Then for any point x0 ∈ Rm and any 0 < t < T < ∞, we
have

Area (M ∩BT (x0))

T 2
− Area (M ∩Bt(x0))

t2

≥ −1

4

∫
M∩(BT (x0)\Bt(x0))

| ~H|2 dvolg

− 1

T 2

∫
M∩BT (x0)

〈x− x0, ~H〉 dvolg +
1

t2

∫
M∩Bt(x0)

〈x− x0, ~H〉 dvolg.

For a proof see [Sim84] or [Riv13].

Definition 5.7. Let ~Φ ∈ EΣ. For x0 ∈ Rm, define the density
θx0
∈ N at x0 as

θx0
:= lim

t→0+

1

πt2
Area

(
~Φ(Σ) ∩Bt(x0)

)
, (5.23)

whenever the limit exists.

To simplify notation in the proofs of the following corollaries,
we introduce for fixed x0 ∈ Rm the quantities

W (t) :=

∫
M∩Bt(x0)

| ~H|2 dvolg, (5.24)
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Y (t) :=
1

t2
Area

(
~Φ(Σ) ∩Bt(x0)

)
. (5.25)

Corollary 5.8 (Existence of the density). Let ~Φ ∈ EΣ. Then
the density θx0

exists for every point x ∈ Rm.

Proof. Let x0 ∈ Rm be an arbitrary point.
Using the Cauchy-Schwarz inequality, we obtain for any t >

0:

1

t2

∫
M∩Bt(x0)

〈x− x0, ~H〉 dvolg

≤ 1

t

(∫
M∩Bt(x0)

|x− x0|2

t2
dvolg

)1/2(∫
M∩Bt(x0)

| ~H|2 dvolg
)1/2

≤ Y (t)1/2 W (t)1/2 ≤ 1

2
(Y (t) +W (t)) ,

(5.26)

where we again denote M := ~Φ(Σ). Since W (~Φ) <∞, we have
W (t) → 0 for t → 0+ and thus, as a direct consequence of
Lemma 5.6, we obtain for 0 < t < T <∞,

(1− ot(1)) Y (t) ≤ Y (T ) (1 + o(T )) + ot,T (1).

Hence,
lim
t→0+

Y (t) = θx0

exists.

Corollary 5.9 (Li-Yau inequality). Let ~Φ ∈ EΣ. Then for any
x0 ∈ Rm,

θx0
≤ 1

4π

∫
Σ

| ~H|2 dvolg. (5.27)
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Proof. Let x0 ∈ Rm be an arbitrary point. Note that for T > 0,

1

T 2

∫
M∩BT (x0)

〈x− x0, ~H〉 dvolg

≤ 1

T 2

(
‖~Φ‖L∞(Σ) + |x0|

)
Area(~Φ(Σ))1/2 W (~Φ)1/2

T→∞−−−→ 0,

(5.28)

with M := ~Φ(Σ). Moreover,

1

T 2
Area(~Φ(Σ) ∩BT (x0)) ≤

1

T 2
Area(~Φ(Σ))

T→∞−−−→ 0. (5.29)

Using Lemma 5.6, (5.26), (5.28) and (5.29) gives

1

4

∫
Σ

| ~H|2 dvolg ≥ (1− ot(1))Y (t) + o1/T (1).

Hence, if we let T →∞, we obtain

θx0
= lim

t→0+

1

π
Y (t) ≤ 1

4π

∫
Σ

| ~H|2 dvolg.

Corollary 5.10. Let ~Φ ∈ EΣ and

W (~Φ) < 8π. (5.30)

Then the immersion ~Φ is in fact an embedding.

Proof. For every point x0 ∈ Rm, the density θx0
exists and is an

element of N. If (5.30) holds true, Corollary 5.9 implies that
θx0
∈ {0, 1}. This means that ~Φ is an embedding.
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Corollary 5.11. Let ~Φ ∈ EΣ. For any x0 ∈ Σ and t > 0,

Area(~Φ(Σ) ∩Bt(x0)) ≤
3

2
W (~Φ)t2. (5.31)

Proof. By Lemma 5.6, (5.26), (5.28) and (5.29) we have

1

2
Y (t) ≤

(
1

4
+

1

2

)
W (~Φ) + o1/T (1).

For T →∞, the result follows.

Corollary 5.12. Let ~Φ ∈ EΣ and x0 ∈ Rm. If θx0
6= 0, then for

any T > 0 we have

Area(~Φ(Σ)∩BT (x0)) ≥
2π

3
T 2− T

2

2

∫
M∩BT (x0)

| ~H|2dvolg. (5.32)

Proof. By Lemma 5.6, we obtain for T > 0,

πθx0
= lim

t→0+
Y (t)

≤ Y (T ) +
1

4
W (T ) +

1

T 2

∫
M∩BT (x0)

〈x− x0, ~H〉 dvolg

≤ 3

2
Y (T ) +

3

4
W (T ),

where we used (5.26) in the last step. Hence, if θx0
≥ 1, then

Area
(
~Φ(Σ) ∩BT (x0)

)
≥ 2π

3
T 2 − T 2

2
W (T ).
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5.4 Proof of the almost-weak closure theorem

Proof of Theorem 5.3. Let ~Φk ∈ EΣ be a sequence satisfying the
assumptions of Theorem 5.3. Let Ψk be diffeomorphisms of Σ
such that ~Ψk := ~Φk ◦ Ψk : (Σk, hk) → Rm is conformal for any
k ∈ N, where hk is the metric of constant curvature and unit
volume of the conformal structure induced by ~Φk.

Define for each k ∈ N and x ∈ Σ a number ρk,x > 0 by

ρk,x := inf

{
ρ > 0 s.t.

∫
B
hk
ρ (x)

|d~n~Ψk
|2hkdvolhk ≥

8π

3

}
. (5.33)

and
ρ∞,x := lim inf

k→∞
ρk,x. (5.34)

Step 1: The case when there are no concentration points. We first
want to investigate the case in which the second fundamental
form does not concentrate anywhere, i.e. we assume that

ρ∞ := inf
x∈Σ

ρ∞,x > 0. (5.35)

We will prove that under this assumption, no blow-up points
occur such that the limit ~ξ is in EΣ.

Step 1a): Translating and dilating ~Ψk to control the conformal

factors in L∞ and to bound the image. Assumption (5.35) gives
us ∫

B
hk
ρ∞/2(x)

|d~n~Ψk
|2hkdvolhk <

8π

3
(5.36)

for all x ∈ Σ and large enough k ≥ kx. By conformal invariance
of the Dirichlet energy, (5.36) implies that assumption (5.19) is
satisfied for any sequence of conformal charts {ϕxk}k≥kx around
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an arbitrary point x ∈ Σ with ϕxk(D
2) = Bhk

ρ∞/2
(x). Since we

further suppose (5.15) and condition (CA), we are in the as-
sumptions of Theorem 5.5. Thus for any Ω b D2, we have

sup
x,k≥kx

‖λxk − cxk‖L∞(Ω) ≤ CΩ, (5.37)

where λxk (cxk resp.) are the logarithms of the conformal factors
(the obtained constants resp.) in the charts ϕxk.

By compactness, we can extract a finite subcovering {Bh∞
ρ∞/8

(xi)}i=1,...,n

from {Bh∞
ρ∞/8

(x)}x∈Σ. Then, since hk → h∞, we can assume

that the n balls {Bhk
ρ∞/4

(xi)}i=1,...,n also cover Σ, for k ∈ N large
enough.

We denote λk = αk+σk for hk = e2σk(dx2
1+dx2

2) and ~Ψ∗kgRm =
e2αkhk. Again due to the strong convergence hk → h∞, there is
a uniform bound

max
i=1,...,n

‖σxik ‖L∞(B
hk
ρ∞/4(xi))

≤M.

This and (5.37) imply for all k ≥ k0 := max{kx1
, . . . , kxn} and

i = 1, . . . , n,

‖αk − cxik ‖L∞(B
hk
ρ∞/4(xi))

≤ ‖λxik − c
xi
k ‖L∞(B

hk
ρ∞/4(xi))

+ ‖σxik ‖L∞(B
hk
ρ∞/4(xi))

(5.38)

≤M + CΩ =: C̃,

where Ω b D2 is chosen in such a way that ϕxik (Ω) ⊃ Bρ∞/4(xi)
for all i = 1, . . . , n.
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As a result of (5.38), observe that ifBhk
ρ∞/4

(xi)∩Bhk
ρ∞/4

(xj) 6= ∅,
we have

|cxik − c
xj
k | ≤ 2C̃.

Since Σ is path-connected, this yields

sup
k≥k0,i,j

|cxik − c
xj
k | ≤ nC̃. (5.39)

Next, we compose each ~Ψk with a translation and dilation,
conformal transformations in Rm, in the following way: Define

~̃Ψk := e−ck
(
~Ψk − ~Ψk(x0)

)
(5.40)

for some x0 ∈ Σ and ck := cx1

k .
The Willmore energy does not change, i.e. we have

W (~̃Ψk) = W (~Ψk) = W (~Φk).

What we have achieved by dilating, however, is that α̃k, the
logarithms of the conformal factors of the new conformal im-

mersions ~̃Ψk, are uniformly bounded in L∞(D2):
We have α̃k = αk − cx1

k , and thus for i = 1, . . . , n and all
k ≥ k0,

‖α̃k‖L∞(B
hk
ρ∞/4(xi))

≤ ‖αk − cxik ‖L∞(B
hk
ρ∞/4(xi))

+ ‖cxik − c
x1

k ‖L∞(B
hk
ρ∞/4(xi))

≤ (1 + n)C̃,

by (5.38) and (5.39). Since {Bhk
ρ∞/4

(xi)}i=1,...,n cover Σ, this yields

sup
k≥k0

‖α̃k‖L∞(Σ) ≤ (1 + n)C̃ =: Ĉ. (5.41)
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Further, we performed the translation in order to bound the

image of ~̃Ψk uniformly: ~̃Ψk maps x0 ∈ Σ to 0 ∈ Rm and for any
point y ∈ Σ, we have

|~̃Ψk(y)− ~̃Ψk(x0)| ≤
∫ y

x0

eα̃kdlhk ≤ C, (5.42)

where the constant is independent of k ∈ N, since supk ‖α̃k‖L∞(Σ)

and supk diam(Σ, hk) are finite. It follows that

~̃Ψk(Σ) ⊂ BC(0) for all k ∈ N.

Step 1b): Weak W 2,2-convergence of ~̃Ψk. Let ϕk be a sequence
of conformal charts and denote the logarithms of the conformal

factors of ~̃Ψk ◦ ϕk as λ̃k. Then, by (2.42) the mean curvature
vector can be written as

~Hk =
e−2λ̃k

2
∆
(
~̃Ψk ◦ ϕk

)
and for all k ∈ N,∥∥∥∆

(
~̃Ψk ◦ ϕk

)∥∥∥2

L2(D2)
=

1

4

∫
D2

e4λ̃k| ~Hk|2dx1dx2

≤ 1

4
‖e2λ̃k‖L∞(D2)

∫
ϕk(D2)

| ~Hk|2dvolg~̃Ψk ≤
1

4
‖e2λ̃k‖L∞(D2) W (~Φk) ≤ C.

(5.43)

Moreover, for all k ∈ N we have∥∥∥∇(~̃Ψk ◦ ϕk
)∥∥∥2

L2(D2)
= 2

∫
D2

e2λ̃kdx1dx2 ≤ C. (5.44)
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(5.43) and (5.44) imply that

sup
k
‖~̃Ψk ◦ ϕk‖W 2,2(D2

1/2) <∞. (5.45)

To see this, let µk be the solution to ∆µk = ∆
(
~̃Ψk ◦ ϕk

)
on D2

µk = 0 on ∂D2.

Then

‖µk‖W 2,2(D2) ≤ C
∥∥∥∆
(
~̃Ψk ◦ ϕk

)∥∥∥
L2(D2)

≤ C (5.46)

for all k ∈ N. For the harmonic rest νk := ~̃Ψk ◦ ϕk − µk, we get
for l = 1, 2, all k ∈ N and Ω b D2,

‖∇lνk‖L2(Ω) ≤ Cl,Ω · ‖νk‖L1(∂D2) ≤ C̃l,Ω, (5.47)

using W 1,2(D2) ↪→ L1(∂D2), the estimates (5.44) and (5.46)
and the Poisson representation formula for harmonic functions
on D2. (5.46) and (5.47) imply the desired result (5.45).

Due to the strong convergence hk → h∞, (5.45) implies

sup
k
‖~̃Ψk‖W 2,2(Σ) <∞. (5.48)

Thus, we can extract a subsequence ~̃Ψk′ such that

~̃Ψk′ ⇀ ~ξ∞ weakly in W 2,2(Σ) (5.49)

for some ~ξ∞ ∈ W 2,2(Σ).
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Step 1c): ~ξ∞ is conformal and log |d~̃Ψk|2
∗−⇀ log |d~ξ∞|2 in (L∞)∗(Σ).

Applying Rellich/ Kondrachov, (5.49) implies that for any p <

∞, there is a further subsequence, also denoted by ~̃Ψk′, such
that

d~̃Ψk′ → d~ξ∞ strongly in Lp(Σ).

By passing to a further subsequence, again denoted by ~̃Ψk′, we
obtain

d~̃Ψk′ → d~ξ∞ a.e. in Σ. (5.50)

This implies that in any sequence of conformal charts, we have
for i, j = 1, 2,

e2λ̃k′δij = ∂xi
~̃Ψk′ ∂xj

~̃Ψk′ → ∂xi
~ξ∞ ∂xj

~ξ∞ a.e. in D2.

This yields

∂xi
~ξ∞ ∂xj

~ξ∞ = e2λ̃∞δij, (5.51)

for λ̃∞ := 1
2 log 1

2 |d~ξ∞|
2. As a result ~ξ∞ is conformal.

Denoting g~̃Ψk
= e2α̃khk and g~ξ∞ = e2α̃h∞, we can use (5.41),

(5.50) and the dominated convergence theorem to conclude that

α̃k′
∗−⇀ α̃∞ weakly∗ in (L∞(Σ))∗.

Step 2: The general case. We consider the general case and drop
assumption (5.35), which means that we allow concentration of
energy of the second fundamental form. This will imply the
occurrence of blow-up points.

Step 2a): Detecting the concentration points. For given k ∈ N,
the collection {Bhk

ρk,x
(x)}x∈Σ forms a Besicovitch covering of Σ,

where ρk,x was defined in (5.33). The Besicovitch covering theo-
rem ([Mat95]) gives a subcovering {Bhk

ρk,i
(xki )}i∈Ik such that any
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point in Σ is covered by at most cΣ ∈ N balls, where cΣ does
not depend on k ∈ N. In fact, Ik is finite and its cardinality
uniformly bounded in k since

|i ∈ Ik| ·
8π

3
≤
∑
i∈Ik

∫
Bρk,i(x

k
i )

|dn~Ψk
|2hk dvolhk

=

∫
Σ

∣∣i ∈ Ik : x ∈ Bρk,i(x
k
i )
∣∣ |dn~Ψk

|2hk dvolhk

≤ cΣ

∫
Σ

|dn~Ψk
|2hk dvolhk = cΣ I(~Φk) ≤ C.

Thus, we can extract a subsequence such that I is independent
of k (and finite) and such that for all i ∈ I,

xik → xi∞, (5.52)

ρk,i → ρ∞,i (5.53)

as k →∞, for some xi∞ ∈ Σ and ρ∞,i ≥ 0. Let

J := {i ∈ I s.t. ρ∞,i = 0} and I0 := I \ J.

It is clear that
⋃
i∈I0 B

h∞
ρ∞,i(x

i
∞) covers Σ. Note that the balls

Bh∞
ρ∞,i

(xi∞) are strictly convex: this holds ifKh∞ ≤ 0 and ifKh∞ =
1 we assume w.l.o.g. that ρ∞,i <

π
2 . Consequently, the points

in Σ which are not contained in the union of the finitely many
open balls cannot accumulate and therefore are isolated and
hence finite:

{a1, . . . , aN} := Σ \

(⋃
i∈I0

Bh∞
ρ∞,i

(xi∞)

)
. (5.54)
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Step 2b): Applying Step 1a away from the concentration points.

For arbitrary i0 ∈ I0, choose si0 < ρ∞,i0. Note that for k large
enough, Bhk

si0
(xi0∞) ⊂ Bhk

ρk,i0
(xi0k ) because ρk,i0 → ρ∞,i0 and xi0k →

xi0∞. Therefore we can assume that for all k ∈ N,∫
B
hk
si0

(x
i0∞)

|d~n~Ψk
|2hkdvolhk <

8π

3
.

Theorem 5.5 gives a constant ck such that

sup
k
‖αk − ck‖L∞(Br(x

i0∞))
≤ Cr (5.55)

for any r < si0. Define

~̃Ψk := e−ck
(
~Ψk − ~Ψk(x0)

)
for some x0 ∈ Σ. Let K b Σ \ {a1, . . . , aN} be any compact set.
Note that, due to (5.54),

ρ∞ := inf
x∈K

ρ∞,x > 0, (5.56)

where ρx was defined in (5.34). Thus, we can apply Step 1a to
any such compact K (and since K ⊂ Σ \ (∪i=1,...,NBδ(ai)) for
some δ > 0, we restrict to compact sets of the latter form). For
δ < infi∈I0 ρ∞,i, we obtain

sup
k
‖α̃k‖L∞(Σ\(∪i=1,...,nBδ(ai))) < Cδ, (5.57)

for a constant Cδ depending on δ. Note that (5.57) implies,
similarly as in (5.42), that

~̃Ψk (Σ \ (∪i=1,...,nBδ(ai))) ⊂ BCδ(0) (5.58)

for k ∈ N.
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Step 2c): Using inversions to control ~̃Ψk(Σ). The previous results
do not give estimates on what happens in the balls Bδ(ai). In
order to get an area control on the limiting map, we would like

to improve (5.58) and have the entire image ~̃Ψk(Σ) contained in
a ball.

Since ~̃Ψk(Bδ(ai)) could degenerate to infinity as k →∞, the
strategy is to bring this back to a ball around 0 by using in-
versions. If we can find a ball Br(p0) such that for all k ∈ N,
~̃Ψk(Σ) ∩ Br(p0) = ∅, then composing the maps ~̃Ψk with the in-

version i : x 7→ x−p0

|x−p0|2 yields i ◦ ~̃Ψk(Σ) ⊂ B1/r(0), as desired.

The existence of such p0 ∈ B1(0) ⊂ Rm, r > 0 is given by the
following lemma, which follows from the monotonicity formula.

Lemma 5.13. Let ~Φk ∈ EΣ with

sup
k
W (~Φk) <∞. (5.59)

Then there exists p0 ∈ Rm and r < 1− |p0| such that

~Φk(Σ) ∩Br(p0) = ∅ for all k ∈ N.

Proof of Lemma 5.13. Let S > 0 and place disjoint balls BS(pi)
in the unit ball obtaining a total number of balls proportional
to 1/Sm (consider for instance a grid of length 2S and put a ball
BS(pi) in each cube).

Fix k ∈ N. If for a ball we have

BS/2(pi) ∩ ~Φk(Σ) 6= ∅,

there exists qi ∈ BS/2(pi) with θk,qi ≥ 1. Since BS/2(qi) ⊂ BS(pi),
Corollary 5.12 gives

Area
(
~Φk(Σ) ∩BS(pi)

)
≥ Area

(
~Φk(Σ) ∩BS/2(qi)

)
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≥ S2π

6
− S2

8

∫
BS/2(qi)

| ~H|2dvolg~Φk .

Since the balls BS(pi) are disjoint and all contained in B1(0),

S2π

6
·
∣∣∣{i s.t. BS/2(pi) ∩ ~Φk(Σ) 6= ∅}

∣∣∣
≤ Area

(
~Φk(Σ) ∩B1(0)

)
+
S2

8

∫
B1(0)

| ~H|2dvolg~Φk (5.60)

≤
(

3

2
+
S2

8

)
W (~Φk),

where we applied Corollary 5.11 in the last step.
Consequently, due to assumption (5.59), for S > 0 chosen

small enough, there exists for each k ∈ N a point pik such that

BS/2(pik) ∩
~̃Ψk(Σ) = ∅.

(If c
Sm is the total number of balls BS/2(pi) in B1(0), choose S > 0

in such a way that cπ
6Sm−2 >

(
3
2 + S2

8

)
supkW (~Φk).) Extract a

subsequence such that pik = p0 is independent of k ∈ N. BS/2(p0)
is the ball we have been looking for.

Proof of Theorem 5.3 continued. Recall (2.30) and apply Lemma

5.13 to the sequence ~̃Ψk and let Br(p0) be the obtained ball free
of mass. Consider the inversion

i0 : x 7→ x− p0

|x− p0|2
, (5.61)

which is a conformal transformation of Rm ∪ {∞} such that

~̃Ψk(Σ) ∩ {center of inversion of i0} = ∅.
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Note that i0 is a diffeomorphism fromBR(p0)\Br(p0) intoB1/r(0)\
B1/R(0), for any R ∈ (0,∞). Thus,

‖∇i0‖L∞(BR(p0)\Br(p0)) + ‖∇i−1
0 ‖L∞(B1/r(0)\B1/R(0)) ≤ CR. (5.62)

Since i0 is conformal it satisfies the equation

di0(x) = eν(x)R

for R ∈ O(m) being some orthogonal matrix. (5.62) implies
that for the conformal factor, we have

‖ν‖L∞(BR(p0)\Br(p0)) ≤ C̃R. (5.63)

Define for k ∈ N,
~̂
Ψk := i0 ◦ ~̃Ψk,

and let α̂k = α̃k + ν denote its conformal factor satisfying
e2α̂khk = g~̂

Ψk

.

From (5.58) and the choice of Br(p0), we know that for δ > 0
and all k ∈ N,

~̃Ψk (Σ \ (∪i=1,...,nBδ(ai))) ⊂ BCδ(0) \Br(p0).

Together with (5.57) and (5.63), this implies that for the con-
formal factors, we have again

sup
k
‖α̂k‖L∞(Σ\(∪i=1,...,nBδ(ai))) ≤ C̃δ. (5.64)

What we have gained by inverting is that

~̂
Ψk(Σ) ⊂ B1/r(0) for all k ∈ N. (5.65)

Corollary 5.11 implies that for all k ∈ N,∫
Σ

e2α̂kdvolhk = Area(
~̂
Ψk(Σ)) ≤ 3

2r2
sup
k
W (~Φk) ≤ C, (5.66)

by (2.30).
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Step 2d): Weak convergence of
~̂
Ψk to ~ξ∞. Since (5.64) holds for

any δ > 0, and due to (5.66), we can argue exactly as in Step 1b)
and extract a subsequence such that

~̂
Ψk′ ⇀ ~ξ∞ weakly in W 2,2

loc (Σ \ {a1, . . . , aN}). (5.67)

Furthermore, Step 1c) shows that ~ξ∞ is conformal and we have

log |d~̃Ψk|2
∗−⇀ log |d~ξ∞|2 in (L∞)∗loc(Σ \ {a1, . . . , aN}).

It remains to prove Condition iv) from Definition 5.1. Since
hk → h∞, (5.66) implies that

sup
k

∫
Σ

|d~̂Ψk|2h∞ dvolh∞ <∞.

Together with (5.67), this implies that for any δ > 0,∫
Σ\(∪i=1,...,nBδ(ai))

|d~ξ∞|2h∞dvolh∞ ≤ lim inf
k

∫
Σ

|d~̂Ψk|2h∞ dvolh∞ ≤ C,

where C is independent of δ. Thus, ~ξ∞ extends to a map in
W 1,2(Σ) and we have

~̂
Ψk ⇀ ~ξ∞ weakly in W 1,2(Σ).

By (5.65),

sup
k
‖~̂Ψk‖L∞(Σ) <∞

which implies in a similar way

~̂
Ψk

∗−⇀ ~ξ∞ weakly in (L∞)∗(Σ).

This finishes the proof of Theorem 5.3 for ~ξk :=
~̂
Ψk.
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6 Weak branched immersions

6.1 Expansion at a blow-up point

Motivated by the compactness result of Theorem 5.3, the pur-
pose of this section is to find out more about the limit object ~ξ
of a weakly convergent sequence ~Φk ∈ EΣ satisfying supk I(~Φk) <
∞. The first observation is on the Gauss map ~n~ξ.

Lemma 6.1. Let ~ξ be the weak limit of a weakly convergent
sequence ~Φk ∈ EΣ in the sense of Definition 5.1 which satisfies
supk I(~Φk) <∞. Then

~n~ξ ∈ W
1,2(Σ).

Proof. Denote the blow-up points of ~ξ by a1, . . . , aN . If follows
from Lemma 5.2 that for any δ > 0, we have∫

Σ\(∪i=1,...,nBδ(ai))

|d~n~ξ|
2
g dvolg ≤ lim inf

k

∫
Σ

|d~n~Φk|
2
gk
dvolgk

= lim inf
k

I(~Φk) ≤ C.

Hence, ~n~ξ ∈ W
1,2
loc (Σ \ {a1, . . . , aN}) and since C is independent

of δ, ~n~ξ extends to a map in W 1,2(Σ).

The following lemma helps to understand the behavior of ~ξ
at its blow-up points.

Lemma 6.2. Let ~ξ : D2 → Rm be a weakly conformal map such
that log |∇~ξ| ∈ L∞loc(D2\{0}) and ~ξ ∈ W 2,2

loc (D2\{0}). Assume ~ξ
extends to a map in W 1,2(D2) and that the corresponding Gauss
map ~n~ξ also extends to a map in W 1,2(D2, Grm−2(Rm)).
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Then ~ξ ∈ W 1,∞(D2) and there exists n ∈ N \ {0} and a
constant C such that

(C − o(1)) |z|n−1 ≤ |∂z~ξ| ≤ (C + o(1)) |z|n−1. (6.1)

Remark 6.3. (6.1) tells us that the behavior of ~ξ at its blow-up
point is just the one of a holomorphic curve such as

C→ C2, z 7→ (z2, z3).

We thus call a blow-up point branch point if it has positive
branching order n − 1 > 0, where n ∈ N \ {0} is given by
Lemma 6.2. (Note that if n − 1 = 0, there is no branching
and we can remove the singularity.)

Proof of Lemma 6.2. We can localize in order to ensure that∫
D2

|∇~n~ξ|
2 dx dy <

8π

3
.

Exactly as in Subsection 4.2, using Hélein’s lifting theorem, we
deduce the existence of a framing

~e := (~e1, ~e2) ∈ W 1,2(D2, Sm−1 × Sm−1)

such that
〈~e1, ~e2〉 = 0, ~n~ξ = ?(~e1 ∧ ~e2), (6.2)∫

D2

[
|∇~e1|2 + |∇~e2|2

]
dx dy ≤ C

∫
D2

|∇~n~ξ|
2 dx dy (6.3)

and satisfying the Coulomb conditon
div(~e1,∇~e2) = 0 in D2(
~e1,

∂~e2

∂ν

)
= 0 on ∂D2.

(6.4)

91



We introduce ei := d~ξ−1~ei and e∗i to be the dual framing.
Denoting |∂x~ξ|2 = |∂y~ξ|2 = e2λ we have that the metric g :=
~ξ∗ gRm is given by g = e2λ

[
dx2 + dy2

]
. Hence with respect to

the flat metric g0 :=
[
dx2 + dy2

]
one has

|ei|2g0
= g0(ei, ei) = e−2λ g(ei, ei) = e−2λ.

and since e∗j(ei) = δij we have that |e∗i |2g0
= e2λ. Since ~ξ is

assumed to be in W 1,2(D2), we deduce that

e∗i ∈ L2(D2).

Since ~ξ is in W 1,∞∩W 2,2
loc (D2 \{0},Rm) and log |∇~ξ| ∈ L∞loc(D2 \

{0}) we have that the framing given by ~fi := e−λ ∂xi
~ξ is in

L∞loc∩W
1,2
loc (D2 \ {0},Rm). Since ~ξ is conformal the unit framing

(~f1, ~f2) is Coulomb:

div(~f1,∇~f2) = 0 in D2 \ {0}.
Denoting by eiθ the rotation which passes from (~f1, ~f2) to (~e1, ~e2),
the Coulomb condition satisfied by the two framings implies that
θ is harmonic on D2 \ {0} and hence analytic on this domain.
This implies that

e∗i ∈ L∞loc ∩W
1,2
loc (D2 \ {0}).

As in Subsection 4.3 we introduce f ∈ W 1,2(D2) as the solution
to 

df = ∗g〈~e1, d~e2〉 on D2∫
∂D2

f = 0.
(6.5)

Then f satisfies ∆g0
f = (∇⊥~e1,∇~e2) on D2

f = 0 on ∂D2

92



and Theorem 3.7 implies that f ∈ C0(D2). As in Subsection 4.3,
we obtain for i = 1, 2

d[e−fe∗i ] = 0 in D′(D2 \ {0}).

By the Schwartz Lemma the distribution d[e−fe∗i ] is a finite lin-
ear combination of successive derivatives of the Dirac Mass at
the origin but since e−fe∗i ∈ L2(D2), this linear combination can
only be 0. Hence we have for i = 1, 2

d[e−fe∗i ] = 0 in D′(D2).

Hence, by Poincaré’s Lemma, there exists (σ1, σ2) ∈ W 1,2(D2,R2)
such that

dσi = e−fe∗i .

The dual basis (∂/∂σ1, ∂/∂σ2) = ef(e1, e2) is positive and or-
thogonal on D2 \ {0}. Hence σ = σ1 + iσ2 is an holomorphic
function on D2 \ {0} which extends to a W 1,2-map on D2. The
classical point removability theorem for holomorphic maps im-
plies that σ extends to an holomorphic function on D2. Possibly
after modifying σ by a constant, we can assume that σ(0) = 0.
The holomorphicity of σ implies in particular that

|dσ|g0
=
√

2 eλ−f

is uniformly bounded and, since f ∈ L∞(D2), we deduce that λ
is bounded from above on D2. This fact implies that ~ξ extends
to a Lipschitz map on D2. Though |dσ|g0

has no zero on D2,
σ′ might have a zero at the origin: there exists an holomorphic
function h(z) on D2 satisfying h(0) = 0, a complex number c0

and an integer n such that

σ(z) = c0 z
n (1 + h(z)). (6.6)
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We have that locally

∂σ~ξ = ∂σ1
~ξ − i∂σ2

~ξ = d~ξ(efe1)− id~ξ(efe2) = ef [~e1 − i~e2].

Hence, since f is continuous, we have that

|∂σ~ξ| =
√

2 ef(0) (1 + o(1)). (6.7)

Combining (6.6) and (6.7) gives

|∂z~ξ| = |∂σ~ξ| |∂zσ| = c0 n
√

2 ef(0) |z|n−1 (1 + o(1)). (6.8)

This last identity implies (6.1).

Definition 6.4. Let (Σ, h) be a conformal structure on Σ, where
h denotes the associated metric of constant curvature and unit
volume. The space F conf

(Σ,h) denotes the set of measurable maps

~ξ : Σ→ Rm that satisfy

i) ~ξ ∈ W 1,∞(Σ);

ii) ~ξ : (Σ, h)→ Rm is weakly conformal;

iii) there exist finitely many blow-up points a1, . . . aN ∈ Σ s.t.

log |d~ξ| ∈ L∞loc(Σ \ {a1, . . . , aN});

iv) ~n~ξ ∈ W
1,2(Σ, Grm−2(Rm)).

Remark 6.5. Let ~Φk be a sequence in EΣ with supk I(~Φk) <∞.
Let hk denote the respective metrics of constant curvature and
unit volume of the induced conformal structures, which are as-
sumed to satisfy condition (CA) with hk → h∞. Suppose ~Φk

weakly converges to ~ξ∞ in the sense of Definition 5.1. Then
Lemma 6.1 and Lemma 6.2 imply that ~ξ∞ is an element of
F conf

(Σ,h∞).
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We are now ready to introduce the space of weak branched
immersions, which contains the closure of EΣ under weak con-
vergence.

Definition 6.6. Define the space FΣ of weak branched immer-
sions as the space of measurable maps ~Φ: Σ → Rm such that
there exists a bi-Lipschitz diffeomorphism Ψ of Σ and a confor-
mal structure on Σ, with h being the associated constant curva-
ture metric of unit volume, such that ~Φ ◦Ψ ∈ F conf

(Σ,h).

Let ~ξ ∈ F conf
(Σ,h) be a weak branched conformal immersion with

branch points {bj} and respective branching orders {nj − 1},
given by Lemma 6.2. Taking isothermal coordinates around bj,
Lemma 6.2 gives us information on the behavior of the conformal
factor

λ = log |∂x1
~ξ| = log |∂x2

~ξ| = log |∂z~ξ| − log
√

2

at 0 = ψ−1(bj). More specifically, we have −∆λ = e2λK in D2 \ {0}

λ(z) = (nj − 1) log |z|+O(1) in D2,
(6.9)

where we used Lemma 2.5 on the regular part of ~ξ.

−∆λ− e2λK (6.10)

is a distribution on D2 and its support is contained in {0}. The
Schwartz Lemma implies that it is a finite linear combination of
δ0 and its derivatives. Since (6.10) is in

⋂
p<∞ L

p(D2), standard
techniques show that no derivatives of δ0 can occur. The second
line in (6.9) yields that

−∆λ = e2λK − 2π(nj − 1)δ0. (6.11)
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In the same way, Lemmas 2.6 and 6.2 imply the following ex-
tension of Liouville’s equation to maps in F conf

Σ .

Lemma 6.7. Let ~ξ ∈ F conf
(Σ,h) have the branch points b1, . . . , bN

with respective branching orders n1 − 1, . . . , nN − 1 ∈ N \ {0},
given by Lemma 6.2 and let

g = e2αh.

Then α satisfies the following PDE in D′(Σ):

−∆hα = e2αKg −Kh − 2π
N∑
j=1

(nj − 1)δbj . (6.12)

The following lemma gives a control of the branch points with
multiplicity.

Lemma 6.8. Let ~ξ ∈ F conf
(Σ,h) have the branch points b1, . . . , bN

with respective branching orders n1 − 1, . . . , nN − 1 ∈ N \ {0},
given by Lemma 6.2 and let

g = e2αh.

Then
N∑
j=1

(nj − 1) ≤ 1

4π
I(~ξ)− χ(Σ). (6.13)

Proof of Lemma 6.8. Applying the identity (6.12) of distribu-
tions to the constant function 1 on Σ yields

2π
N∑
j=1

(nj − 1) =

∫
Σ

e2αKg dvolh −
∫

Σ

Kh dvolh

=

∫
Σ

Kg dvolg − 2πχ(Σ) ≤ 1

2
I(~ξ)− 2πχ(Σ),

where we used (2.23) in the last step.
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6.2 Weak sequentially closedness of FΣ

We called Theorem 5.3 a weak “almost-closure theorem” because
starting from a sequence ~Φk in EΣ the weak limit map ~ξ∞ is in
general not contained in the class EΣ, but only in the strictly
larger space FΣ. In the following theorem we show that the
space FΣ of weak branched immersions is in fact closed under
weak convergence, i.e. we obtain a weak closure theorem.

Theorem 6.9 (Weak closure theorem). Let ~Φk ∈ FΣ be a se-
quence such that

sup
k

I(~Φk) <∞. (6.14)

Suppose assumption (CA) is satisfied and thus, up to subse-
quences, for the constant curvature metrics hk of unit volume
of the conformal structures induced by ~Φk, we have

hk → h∞ in C l(Σ), for all l ∈ N,

for h∞ being the constant curvature metric of unit volume of
some conformal structure on Σ.

Then there exists a subsequence of ~Φk which, in the sense
of Definition 5.1, weakly converges to an element of the space
F conf

(Σ,h∞) ⊂ FΣ.

Proof of Theorem 6.9. Compose with diffeomorphisms Ψk to ob-
tain ~ξk := ~Φk ◦ Ψk ∈ F conf

(Σ,hk). Denote the branch points of ~ξk by

bk1, . . . , b
k
Nk

with respective branching orders nk1−1, . . . , nkNk−1 ∈
N \ {0}. (6.12) and (6.13) imply that

‖∆αk‖M(Σ) ≤ 2

(
1

2
I(~Φk)− 2πχ(Σ)

)
≤ C.
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Consequently, Theorem 3.6 implies that, as in the unbranched
case, we get a global bound

sup
k
‖dαk‖L2,∞(Σ) <∞.

Thus, Theorem 5.5 holds true for a sequence of isothermal charts
ϕk satisfying

sup
k

∫
D2

|∇~n~ξk◦ϕk|
2dx1dx2 <

8π

3
(6.15)

and containing none of the branch points bk1, . . . , b
k
Nk

.
Lemma 6.8 and condition (6.14) imply that the number of

branch points is uniformly bounded:

Nk ≤
Nk∑
j=1

(nkj − 1) ≤ 1

4π
I(~Φk)− χ(Σ) ≤ C.

Hence, we can extract a subsequence of ~ξk such that Nk′ := N0

is independent of k′.
We perform Step 2a) in the proof of Theorem 5.3 with the

only difference that when extracting a further subsequence in
order to obtain (5.52) and (5.53), we do this in such a way that
additionally, for each j ∈ {1, . . . , N0} there exists b∞j ∈ Σ with

bk
′

j → b∞j , (6.16)

as k′ →∞. Define

{d1, . . . , dM} := {b∞1 , . . . , b∞N0
} ∪ {a1, . . . , aN}, (6.17)

where the latter set of points is as defined in (5.54).
In Step 2b), ifBh∞

si0
(xi0∞) contains any of the points b∞1 , . . . , b

∞
N0

,

choose a smaller ball B̂t ⊂ Bh∞
si0

(xi0∞) that is free of these points.
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Let 0 < δ < min{mini∈I0 ρi,∞, t} be arbitrary small. Step 1a)
can now be applied to K = Σ \ ∪Mi=1Bδ(di), with

ρ∞ = min

{
inf
x∈K

ρx,∞,
δ

2

}
.

The choice of ρ∞ makes sure that Theorem 5.5 can be applied,
i.e. we have a cover of balls satisfying (6.15) and containing no
branch points.

The rest of Step 2b) and Steps 2c) and d) imply weak conver-
gence to some ~ξ∞ ∈ F conf

(Σ,h∞) with blow-up points d1, . . . , dM .
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7 The Willmore surface equation

In this section we shall work mostly in the simplest framework of
weak immersions into R3, though most of the arguments below
can be extended to the most general framework of weak immer-
sions into arbitrary Riemannian manifolds ([Riv08], [MR13]).

As always, Σ denotes a smooth closed oriented 2-dimensional
manifold. In this section we will work locally in conformal charts
most of the time.

We first introduce the notion of weak Willmore immersions.

Definition 7.1. Let ~Φ: Σ→ Rm be a weak immersion in EΣ. ~Φ
is a critical point for W if

∀~w ∈ C∞(Σ,Rm)
d

dt
W (~Φ + t~w)

∣∣∣∣
t=0

= 0. (7.1)

Such a weak immersion is called Willmore.

Weak Willmore immersions are characterized by an Euler-
Lagrange equation. We want to study it for the case m = 3.

Theorem 7.2 (Willmore surface equation). Let ~Φ: D2 → R3 be
a conformal weak immersion in ED2. Φ is Willmore if and only
if

div
[
2∇ ~H − 3H ∇~n+ ~H ×∇⊥~n

]
= 0 in D′(D2). (7.2)

Since it is a local property for a weak immersion ~Φ ∈ EΣ to be
Willmore, one can work locally in a disc-neighborhood of a point
and use isothermal coordinates on this disc. Thus Theorem 7.2
implies immediately the following.
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Corollary 7.3. ~Φ ∈ EΣ is a weak Willmore immersion if and
only if in any conformal chart, the following holds true:

div
[
2∇ ~H − 3H ∇~n+ ~H ×∇⊥~n

]
= 0 in D′(D2). (7.3)

Proof of Theorem 7.2. Let ~Φ: Σ→ R3 be conformal and in ED2,
and let

~Φt := ~Φ + t~w

be any variation, for ~w ∈ C∞c (D2,R3). For |t| small enough, ~Φt

is still in ED2 and we consider

W (~Φt) =

∫
D2

| ~Ht|2 dvolgt =

∫
D2

H2
t dvolgt,

where ~Ht := Ht ~nt. We want to compute

d

dt
W (~Φt)

∣∣∣∣
t=0

= 2

∫
D2

H
d

dt
Ht

∣∣∣∣
t=0

dvolg +

∫
D2

H2 d

dt
(dvolgt)

∣∣∣∣
t=0

.

(7.4)
Recall from (2.16) that Ht = 1

2

∑
i,j(gt)

ij(It)ij where we denote

(It)ij = 〈~It(∂xi, ∂xj), ~nt〉 = −〈∂xi~nt, ∂xj~Φ〉. Consequently,

d

dt
Ht

∣∣∣∣
t=0

= −1

2

∑
i,j

d

dt
(gt)

ij

∣∣∣∣
t=0

〈∂xi~n, ∂xj~Φ〉

+ gij
[〈

∂xi
d

dt
~nt

∣∣∣∣
t=0

, ∂xj
~Φ

〉
+ 〈∂xi~n, ∂xj ~w〉

]
. (7.5)

We have (gt)ij = 〈∂xi~Φt, ∂xj
~Φt〉, thus

d

dt
(gt)ij

∣∣∣∣
t=0

= 〈∂xi ~w, ∂xj~Φ〉+ 〈∂xi~Φ, ∂xj ~w〉. (7.6)
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Since
∑

i(gt)
ki(gt)ij = δkj and gij = e2λ I2, where I2 is the (2×2)-

identity matrix, we have

d

dt
(gt)

kj

∣∣∣∣
t=0

e2λ + e−2λ d

dt
(gt)kj

∣∣∣∣
t=0

= 0, (7.7)

from which we deduce

d

dt
(gt)

kj

∣∣∣∣
t=0

= −e−4λ d

dt
(gt)kj

∣∣∣∣
t=0

= −e−4λ
(
〈∂xk ~w, ∂xj~Φ〉+ 〈∂xk~Φ, ∂xj ~w〉

)
.

(7.8)
Note that we can write

d

dt
~nt

∣∣∣∣
t=0

= a~e1 + b~e2,

for two functions a and b. They can be identified as follows:

eλ a =

〈
eλ ~e1,

d

dt
~nt

∣∣∣∣
t=0

〉
= −

〈
d

dt

(
∂x1

~Φt

)∣∣∣∣
t=0

, ~n

〉
= −〈∂x1

~w,~n〉,

and similarly one obtains b = −e−λ 〈∂x2
~w,~n〉. Thus,∑

i,j

gij
〈
∂xi

d

dt
~nt

∣∣∣∣
t=0

, ∂xj
~Φ

〉

= −e−2λ ∂x1

(
e−2λ 〈〈∂x1

~w,~n〉 ∂x1
~Φ + 〈∂x2

~w,~n〉 ∂x2
~Φ, ∂x1

~Φ〉
)

− e−2λ ∂x2

(
e−2λ 〈〈∂x1

~w,~n〉 ∂x1
~Φ + 〈∂x2

~w,~n〉 ∂x2
~Φ, ∂x2

~Φ〉
)

= −e−2λ (∂x1
〈∂x1

~w,~n〉+ ∂x2
〈∂x2

~w,~n〉) . (7.9)
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Observe

d

dt
(dvolgt)

∣∣∣∣
t=0

=
d

dt
(det(gt)ij)

1/2

∣∣∣∣
t=0

dx1 ∧ dx2

=
1

2
e−2λ d

dt

(
(gt)11 (gt)22 − (gt)

2
12

)∣∣∣∣
t=0

dx1 ∧ dx2

=
1

2

(
d

dt
(gt)11

∣∣∣∣
t=0

+
d

dt
(gt)22

∣∣∣∣
t=0

)
dx1 ∧ dx2

=
(
〈∂x1

~Φ, ∂x1
~w〉+ 〈∂x2

~Φ, ∂x2
~w〉
)
dx1 ∧ dx2.

(7.10)

where the last step is due to (7.6).
Plugging (7.5), (7.7), (7.9) and (7.10) in (7.4) yields

d

dt
W (~Φt)

∣∣∣∣
t=0

=

∫
D2

H e−4λ
∑
i,j

(
〈∂xi ~w, ∂xj~Φ〉+ 〈∂xi~Φ, ∂xj ~w〉

)
〈∂xi~n, ∂xj~Φ〉 e2λ dx1dx2

+

∫
D2

H e−2λ (∂x1
〈∂x1

~w,~n〉+ ∂x2
〈∂x2

~w,~n〉) e2λ dx1dx2

−
∫
D2

H e−2λ (〈∂x1
~n, ∂x1

~w〉+ 〈∂x2
~n, ∂x2

~w〉) e2λ dx1dx2

+

∫
D2

H2
(
〈∂x1

~Φ, ∂x1
~w〉+ 〈∂x2

~Φ, ∂x2
~w〉
)
dx1dx2

=

∫
D2

H e−2λ
∑
i,j

〈∂xi~n, ∂xj~Φ〉〈∂xj~Φ, ∂xi ~w〉 dx1dx2
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+

∫
D2

H (∂x1
〈∂x1

~w,~n〉+ ∂x2
〈∂x2

~w,~n〉) dx1dx2

+

∫
D2

H2
(
〈∂x1

~Φ, ∂x1
~w〉+ 〈∂x2

~Φ, ∂x2
~w〉
)
dx1dx2,

where we used that

〈∂x1
~n, ∂x1

~w〉+ 〈∂x2
~n, ∂x2

~w〉 =
∑
i,j

〈∂xi~n, ∂xj~Φ〉〈∂xj~Φ, ∂xi ~w〉.

and
〈∂xi~n, ∂xj~Φ〉 = 〈∂xj~n, ∂xi~Φ〉.

Partial integration gives

d

dt
W (~Φt)

∣∣∣∣
t=0

= −
∫
D2

〈
∂x1

(
He−2λ〈∂x1

~n, ∂x1
~Φ〉 ∂x1

~Φ +He−2λ〈∂x1
~n, ∂x2

~Φ〉 ∂x2
~Φ
)
, ~w
〉
dx1dx2

−
∫
D2

〈
∂x2

(
He−2λ〈∂x2

~n, ∂x1
~Φ〉 ∂x1

~Φ +He−2λ〈∂x2
~n, ∂x2

~Φ〉 ∂x2
~Φ
)
, ~w
〉
dx1dx2

+

∫
D2

〈∂x1
(∂x1

H ~n) + ∂x2
(∂x2

H ~n) , ~w〉 dx1dx2

−
∫
D2

〈
∂x1

(
H2 ∂x1

~Φ
)

+ ∂x2

(
H2 ∂x2

~Φ
)
, ~w
〉
dx1dx2

=

∫
D2

〈
∂x1

(
−H πT (∂x1

~n) + ∂x1
H ~n−H2 ∂x1

~Φ
)

+∂x2

(
−H πT (∂x2

~n) + ∂x2
H ~n−H2 ∂x2

~Φ
)
, ~w
〉
dx1dx2
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=

∫
D2

〈
div
(
−H∇~n+∇H ~n−H2∇~Φ

)
, ~w
〉
dx1dx2.

Thus, (7.1) holds if and only if

div
(
−H∇~n+∇H ~n−H2∇~Φ

)
= 0. (7.11)

Using Lemma 2.60 gives the desired result.

Note that in the proof of Theorem 7.2, the assumption of ~Φ
being an element of ED2 was enough to make sense of each line.
In particular, the quantity in (7.2) is an ”honest” distribution
in D′(D2). Indeed, ~H ∈ L2(D2) and consequently

∇ ~H ∈ H−1(D2), H∇~n ∈ L1(D2), ~H ×∇⊥~n ∈ L1(D2).
(7.12)

Note that first an alternative Euler-Lagrange equation for
smooth Willmore immersions was discovered: by Shadow-Thomsen
([Tho23]) in dimension 3, for general m ≥ 3 by Weiner ([Wei78]).
In dimension 3, it is

∆gH + 2H (H2 −K) = 0. (7.13)

In [Riv08] the equivalence of (7.2) and (7.13) for smooth con-
formal immersions is shown. Note that equation (7.13) contains
the nonlinearity 2H (H2−K), which is cubic in the second fun-
damental form. Thus, it has no meaning for weak immersions
with second fundamental form bounded in L2.

In the next subsection we want to address the question whether
weak Willmore immersions are actually smooth.

Observe that (7.3) is in conservative-elliptic form which is
critical in dimension 2 under the assumption of L2-bounded sec-
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ond fundamental form. Indeed, we write the equation as follows:

∆ ~H = div

[
3

2
H∇~n− 1

2
~H ×∇⊥~n

]
. (7.14)

As observed in (7.12), the second fundamental form being in L2

implies that

3

2
H∇~n− 1

2
~H ×∇⊥~n ∈ L1(D2).

Theorem 3.5 implies that

1

2π
log |x| ∗ div

[
3

2
H∇~n+

1

2
∇⊥~n× ~H

]
∈ L2,∞(D2).

Inserting this information back in (7.14), we obtain ~H ∈ L2,∞
loc (D2)

which is almost the information we started from. This phe-
nomenon characterizes critical elliptic systems.
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7.1 Conservation laws for weak Willmore immersions

The key for studying the regularity of weak Willmore immersions
will be to discover conservation laws for them.

Theorem 7.4. Let ~Φ ∈ ED2 be a conformal weak Willmore im-
mersion. Then there exists ~L ∈ L2,∞

loc (D2,R3) such that

∇⊥~L = 2 ∇ ~H − 3H ∇~n+ ~H ×∇⊥~n. (7.15)

Moreover the following conservation laws are satisfied:
div
[
〈~L,∇⊥~Φ〉

]
= 0 (7.16a)

div
[
~L×∇⊥~Φ + 2H ∇⊥~Φ

]
= 0. (7.16b)

Proof of Theorem 7.4. Since ~Φ satisfies (7.3), by the weak Poincaré
Lemma there exists ~L ∈ D′(D2) such that

∇⊥~L = 2 ∇ ~H − 3H ∇~n+ ~H ×∇⊥~n. (7.17)

Assuming ~Φ ∈ ED2, the right hand side of (7.17) is in H−1 ∩
L1(D2). We deduce from Theorem 3.5 that ~L is the sum of a
harmonic function and a function in L2,∞(D2), thus

~L ∈ L2,∞
loc (D2).

For proving (7.16a), note that

div
[
〈~L,∇⊥~Φ〉

]
= 〈∇~L,∇⊥~Φ〉 = −〈∇⊥L,∇~Φ〉

= −〈−H ∇~n+ ~H ×∇⊥~n,∇~Φ〉.
(7.18)

Using (2.60), we obtain

〈H ∇~n+ ~H ×∇⊥~n,∇~Φ〉 = −4 e2λ H2. (7.19)
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Finally,

〈−2H ∇~n,∇~Φ〉 = 2H (I(∂x1
, ∂x1

) + I(∂x2
, ∂x2

)) = 4 e2λ H2,
(7.20)

which, together with (7.18) and (7.19) gives the first conserva-
tion law (7.16a).

For showing the second one, recall from (2.10) that

div
[
~L×∇⊥~Φ

]
= ∇~Φ×∇⊥~L. (7.21)

Using again (2.60), we have

∇~Φ×
(
H ∇~n+ ~H ×∇⊥~n

)
= −2H2 ∇~Φ×∇~Φ = 0. (7.22)

We compute

∇~Φ× (2 ∇H · ~n− 2H ∇~n)

= 2 ∇H ·
(
∇~Φ× ~n

)
− 2H

(
∂x1

~Φ× ∂x1
~n+ ∂x2

~Φ× ∂x2
~n
)

︸ ︷︷ ︸
=0

= 2 ∇H · ∇⊥~Φ.
(7.23)

Identities (7.21), (7.22) and (7.22) imply the second conservation
law (7.16b).

Having now found two new conserved quantities, as we did
for the first one 2 ∇ ~H − 3H ∇~n+ ~H ×∇⊥~n, we can apply the
weak Poincaré Lemma in order to obtain ”primitives” of these
quantities.

Theorem 7.5. Let ~Φ ∈ ED2 be a conformal weak Willmore im-
mersion and let ~L ∈ L2,∞

loc (D2,R3) be as in Theorem 7.4, satisfing
the conservation laws (7.16a) and (7.16b).
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There exist14 S ∈ W 1,(2,∞)
loc (D2,R) and ~R ∈ W 1,(2,∞)

loc (D2,R3)
such that ∇

⊥S = 〈~L,∇⊥~Φ〉 (7.24a)

∇⊥ ~R = ~L×∇⊥~Φ + 2H ∇⊥~Φ (7.24b)

and the following equations hold:∇S = −〈~n,∇⊥ ~R〉 (7.25a)

∇~R = ~n×∇⊥ ~R +∇⊥S · ~n. (7.25b)

Proof of Theorem 7.5. Due to conservations laws (7.16a) and
(7.16b), and the Poincaré Lemma, there exists S ∈ D′(D2,R)
and ~R ∈ D′(D2,R3) satisfying (7.24a) and (7.24b).

Since ~Φ ∈ W 1,∞(D2) and ~L ∈ L2,∞
loc (D2), ∇S and ∇~R are in

L2,∞
loc (D2).

Next, we want to show (7.25b). Note that, by (7.24b),

~n×∇⊥ ~R = ~n×
(
~L×∇⊥~Φ

)
+ 2H ~n×∇⊥~Φ. (7.26)

We have
~n×∇⊥~Φ = ∇~Φ (7.27)

and

~n×
(
~L×∇⊥~Φ

)
= −∇⊥~Φ×

(
~n× ~L

)
− ~L×

(
∇⊥~Φ× ~n

)
= −

(
〈~L,∇⊥~Φ〉 · ~n− 〈∇⊥~Φ, ~n〉 · ~L

)
+ ~L×∇~Φ

= −〈~L,∇⊥~Φ〉 · ~n+ ~L×∇~Φ.

(7.28)

14We denote by W 1,(2,∞) the space of distributions in L2 with gradient in L2,∞.
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From (7.24a) we know that

〈~L,∇⊥~Φ〉 = ∇⊥S. (7.29)

Combining the identities (7.26), (7.27), (7.28) and (7.29) yields

~n×∇⊥ ~R = −∇⊥S · ~n+ ~L×∇~Φ + 2H ∇~Φ.

On the other hand, from (7.24b) we know that

∇~R = ~L×∇~Φ + 2H ∇~Φ.

The two last identities together imply (7.25b).

The first equation (7.25a) now follows easily from the second
one: Using (7.25b), we have

〈~n,∇⊥ ~R〉 = −〈~n, ~n×∇~R〉︸ ︷︷ ︸
=0

−〈~n,∇S · ~n〉 = −∇S.

Corollary 7.6. Let ~Φ ∈ ED2 be a conformal weak Willmore
immersion. Let ~L ∈ L2,∞

loc (D2,R3) be as in Theorem 7.4 and S ∈
W

1,(2,∞)
loc (D2,R) and ~R ∈ W 1,(2,∞)

loc (D2,R3) as in Theorem 7.5.

Then the triple (~Φ, S, ~R) satisfies the following system:

∆S = −〈∇~n,∇⊥ ~R〉 (7.30a)

∆~R = ∇~n×∇⊥ ~R +∇⊥S · ∇~n (7.30b)

∆~Φ =
1

2

(
∇⊥S · ∇~Φ +∇⊥ ~R×∇~Φ

)
. (7.30c)

Proof of Corollary 7.6. (7.30a) and (7.30b) are obtained by tak-
ing the divergence of (7.25a) and (7.25b) respectively, recalling
(2.9) and (2.10).
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Furthermore, using (7.24b), we have

∇~Φ×∇⊥ ~R

= ∇~Φ×
(
~L×∇⊥~Φ

)
+ 2H ∇~Φ×∇⊥~Φ

= 〈∇~Φ,∇⊥~Φ〉 ~L− 〈∇~Φ, ~L〉 · ∇⊥~Φ− 2H ∂x1
~Φ× ∂x2

~Φ

= −〈∇~Φ, ~L〉 · ∇⊥~Φ− 4He2λ ~n,

(7.31)

where eλ := |∂x1
~Φ| = |∂x1

~Φ|. Using (7.24a), we obtain

4e2λ ~H = −∇S · ∇⊥~Φ−∇~Φ×∇⊥ ~R.

This, together with the representation (2.42) of the mean cur-
vature vector, implies the desired identity (7.30c).

Remark 7.7. Recently, Bernard ([Ber]) found that the three
conservations laws (7.3), (7.16a) and (7.16b) are due to Noether’s
theorem, i.e. they correspond to particular symmetries of the
Willmore functional.

We recall Noether’s theorem for a functional of the form

L(u) =

∫
D2

l(u,∇u) dxdy, u ∈ W 1,2(D2,Rm),

for l(z, p) being C1 wrt z and C2 wrt p.
A vector field X on Rm is called infinitesimal symmetry of l

if for all u ∈ W 1,2(D2)

l(u,∇u) = l(F (t, u),∇(F (t, u))),

where F (t, z) is the flow of X at time t started from z ∈ Rm at
time 0.
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Theorem 7.8 (Emmy Noether, 1918). Let X be an infinitesimal
symmetry of l. If u is a critical point of L, then

div

(
∂l

∂p
·X(u)

)
= 0.

J := ∂l
∂p · X(u) is called the Noether Current associated to the

symmetry X.

In [Ber], Bernard considers variations of a smooth immersion
~Φ: Σ→ Rm of the form

~Φt := ~Φ + t(Aj∂j~Φ + ~B), (7.32)

for ~B = B~n. (As before, we shall only consider the case m = 3
in the sequel.) He derives

d

dt

(∫
Σ0

| ~Ht|2dvolgt
)∣∣∣∣

t=0

=

∫
Σ0

[
〈 ~B, ~W〉+div

(
〈 ~H,∇ ~B〉 − 〈 ~B,∇ ~H〉+H2

(
A1

A2

))
︸ ︷︷ ︸

:=J

]
dvolg,

(7.33)

where Σ0 ⊂ Σ is any smooth subsurface and

~W = (∆gH + 2H(H2 −K))~n

the Willmore operator. Recall from (7.13) that ~W vanishes for a
Willmore surface, i.e. a critical point of the Willmore functional.
Assuming that ~Φ is a Willmore surface and choosing Aj∂j~Φ+ ~B
in (7.32) as a translation, dilation and rotation gives then the
following associated Noether currents:
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Translation. For ~a ∈ R3, let

~Φt = ~Φ + t~a, i.e. Aj = 〈~a, gij∂i~Φ〉, B = 〈~n,~a〉.

Noether current:

J~a = 〈~a,−∇H~n+H∇~n+H2∇~Φ〉.

Note that

div(−∇H~n+H∇~n+H2∇~Φ) = 0

is equivalent to the Willmore equation (7.3) in conservative
form (cf. (7.11)).

Dilation. For µ ∈ R \ {0}, let

~Φt = ~Φ + tµ~Φ, i.e. Aj = µ〈gij∂i~Φ, ~Φ〉, B = µ〈~n, ~Φ〉.

Noether current:

Jµ =
µ

2
〈~L,∇⊥~Φ〉,

where L is defined as in (7.15).

div〈~L,∇⊥~Φ〉 = 0

is conservation law (7.16a).

Rotation. For b ∈ R3, let

~Φt = ~Φ+t~b×~Φ, i.e. Aj = −〈~b, gij∂i~Φ×~Φ〉, B = −〈~b, ~n×~Φ〉.

Noether current:

J~b = 〈~b,−1

2
~L×∇⊥~Φ + ~H ×∇~Φ〉,

Note that

div(−1

2
~L×∇⊥~Φ+ ~H×∇~Φ〉) = −1

2
div(~L×∇⊥~Φ+2H∇⊥~Φ) = 0

is conservation law (7.16b).
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Inversion. Finally, considering a variation corresponding to a
translation and an inversion of the form

~Φt = ~Φ + t(|~Φ|2~a− 2〈~Φ,~a〉~Φ),

for a ∈ R3, leads to (7.30c), i.e. the equation that estab-
lishes a connection between the potentials S and ~R, obtained
as primitives of the two former conservations laws, and the
immersion ~Φ.

7.2 The regularity of weak Willmore immersions.

We are now ready to prove that weak Willmore immersions are
C∞ in conformal parametrization. The starting point is the
elliptic system with quadratic non-linearities which are made of
linear combinations of Jacobians. It is somehow reminiscent to
the CMC (constant mean curvature) equation

∆u = 2H ∂x1
u× ∂x2

u, (7.34)

for H ∈ R being a constant.
Wente showed that any W 1,2(D2,R3)-solution of (7.34) is ac-

tually smooth. This makes us hope to get the same fact for
weak Willmore immersions. To put ourselves in the same start-
ing position as in the case of the CMC equation, we show that
∇S and ∇~R are not only in L2,∞, but in fact in L2. This is an
easy consequence of the previous corollary, together with some
result on integrability by compensation.

Corollary 7.9. Let ~Φ ∈ ED2 be a conformal weak Willmore
immersion and ~L ∈ L2,∞

loc (D2,R3), S ∈ W 1,(2,∞)
loc (D2,R) and ~R ∈

W
1,(2,∞)
loc (D2,R3) be as in Theorems 7.4 and 7.5.

Then ∇S ∈ W 1,2
loc (D2,R) and ∇~R ∈ W 1,2

loc (D2,R3).
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Proof. Appying Theorem 3.10 to the equations (7.30a) and (7.30b)
gives the result.

We can now attack the proof of the smoothness of weak Will-
more immersions, just as it works in the case of the CMC equa-
tion. We will need the following lemma.

Lemma 7.10. Let v be a harmonic function on D2. Then for
every point p ∈ D2, the function

r 7→ 1

r2

∫
Br(p)

|∇v|2 dx1dx2

is increasing.

Proof. See [Riv], Lemma IV.1.

Theorem 7.11 (Weak Willmore immersions are smooth.). Let
~Φ ∈ EΣ be a weak Willmore immersion. Then ~Φ is C∞ in con-
formal paratmetrization.

Proof. For any conformal chart, we can apply Theorems 7.4
and 7.5 as well as Corollaries 7.6 and 7.9 and obtain ∇S ∈
W 1,2

loc (D2,R) and ∇~R ∈ W 1,2
loc (D2,R3) such that the following

system is satisfied:

∆S = −〈∇~n,∇⊥ ~R〉 (7.35a)

∆~R = ∇~n×∇⊥ ~R +∇⊥S · ∇~n (7.35b)

∆~Φ =
1

2

(
∇⊥S · ∇~Φ +∇⊥ ~R×∇~Φ

)
. (7.35c)
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Step 1: Morrey decrease. Our first aim is to prove the existence
of a positive constant α such that

sup
r<1/4, p∈B1/2(0)

r−α
∫
Br(p)

(
|∇S|2 + |∇~R|2

)
dx1dx2 <∞. (7.36)

Once this Morrey decrease for |∇S|2 + |∇~R|2 is established, by
(7.35a) and (7.35b), we get one for |∆S|+ |∆~R| as well:

sup
r<1/4, p∈B1/2(0)

r−α/2
∫
Br(p)

(
|∆S|+ |∆~R|

)
dx1dx2 <∞. (7.37)

Then a classical estimate on Riesz potentials ([Ada75]) gives
that

∇S,∇~R ∈ Lploc(B1/2(0)) for some p > 2, (7.38)

from which we will start the bootstrapping in Step 2.

To prove (7.36), we let ε0 > 0 fixing its value later. There
exists some radius r0 > 0 such that

sup
p∈B1/2(0)

∫
Br0(p)

|∇~n|2 dx1dx2 < ε0.

Let p ∈ B1/2(0) be arbitrary. Let ΨS and ~Ψ~R be the solutions of ∆ΨS = −〈∇~n,∇⊥ ~R〉 in Br0
(p)

ΨS = 0 on ∂Br0
(p)

(7.39)

and ∆~Ψ~R = ∇~n×∇⊥ ~R +∇⊥S · ∇~n in Br0
(p)

~Ψ~R = 0 on ∂Br0
(p).

(7.40)
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By Lemma 7.10 and the Dirichlet principle, the harmonic rests

vS := S −ΨS ~v~R := ~R− ~Ψ~R

satisfy ∫
Br0/2(p)

(
|∇vS|2 + |∇~v~R|

2
)
dx1dx2

≤ 1

4

∫
Br0(p)

(
|∇S|2 + |∇~R|2

)
dx1dx2.

(7.41)

Applying Wente’s Theorem 3.7 to (7.39) and (7.40) yields∫
Br0(p)

(
|∇ΨS|2 + |∇~Ψ~R|

2
)
dx1dx2

≤ C

∫
Br0(p)

|∇~n|2 dx1dx2

∫
Br0(p)

(
|∇S|2 + |∇~R|2

)
dx1dx2

≤ Cε0

∫
Br0(p)

(
|∇S|2 + |∇~R|2

)
dx1dx2.

(7.42)
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Putting (7.41) and (7.42) together yields∫
Br0/2(p)

(
|∇S|2 + |∇~R|2

)
dx1dx2

≤ 2

∫
Br0(p)

(
|∇ΨS|2 + |∇~Ψ~R|

2
)
dx1dx2

+ 2

∫
Br0/2(p)

(
|∇vS|2 + |∇~v~R|

2
)
dx1dx2

≤
(

2Cε0 +
1

2

)∫
Br0(p)

(
|∇S|2 + |∇~R|2

)
dx1dx2.

(7.43)

We now choose ε0 := 1/(8C). Then iterating (7.43) yields∫
B2−jr0

(p)

(
|∇S|2 + |∇~R|2

)
dx1dx2

≤
(

3

4

)j ∫
Br0(p)

(
|∇S|2 + |∇~R|2

)
dx1dx2 (7.44)

≤ Cr0

(
2−jr0

)α
,

where we choose

α := log2

(
4

3

)
, Cr0

:= r−α0

∫
B1(0)

(
|∇S|2 + |∇~R|2

)
dx1dx2.

Since α and r0 are independent of p ∈ B1/2(0), this gives (7.36)
for the sup taken over all r ≤ r0. Noting that

sup
r0<r<1/4, p∈B1/2(0)

r−α
∫
Br(p)

(
|∇S|2 + |∇~R|2

)
dx1dx2
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≤ r−α0

∫
B1(0)

(
|∇S|2 + |∇~R|2

)
dx1dx2 <∞

yields (7.36).

Bootstrapping. Note that (7.38) from Step 1 and (7.35c) imply
that also

∇~n ∈ Lploc(B1/2(0)).

This and (7.38) we can use to bootstrap in (7.35a) and (7.35b)
and obtain that

∇S, ∇~R ∈ Lqloc(B1/2(0)) for all q <∞.

Bootstrapping this information in (7.35c) yields

~Φ ∈ W 2,q
loc (B1/2(0)) for all q <∞,

from which we deduce that

~n ∈ W 1,q
loc (B1/2(0)) for all q <∞.

The latter information injected back in (7.35a) and (7.35b) gives

∇2S, ∇2 ~R ∈ Lqloc(B1/2(0)) for all q <∞,

and so on and so forth. Iteration gives that

~Φ ∈ W k,p
loc (B1/2(0)) for all k ∈ N, 1 ≤ p ≤ ∞.

Hence
~Φ ∈ C∞loc(B1/2(0)),

which finishes the proof.

Finally, we want to remark that if one performs the steps in
the regularity proof more carefully and bootstraps in (7.14), one
obtains the following result.
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Theorem 7.12 (ε-regularity for Willmore). Let ~Φ ∈ ED2 be a
conformal weak Willmore immersion with |∂x1

~Φ| = |∂x2
~Φ| = eλ.

Assume that
‖∇λ‖L2,∞(D2) ≤ C0.

Then there exists ε0 > 0 with the following property:
If ∫

D2

|∇~n|2 dx1dx2 ≤ ε0,

then

‖eλ |H|‖2
L∞(D2

1/2) + ‖∇~n‖2
L∞(D2

1/2)

≤ C
(
ε0, ‖∇λ‖L2,∞(D2)

) ∫
D2

3/4

|∇~n|2 dx1dx2.
(7.45)

From the ε-regularity (and Theorem 5.4), one sees easily that
one can pass to the limit in the Willmore surface equation (7.2),
if one considers a sequence of weak Willmore immersions with
a uniform L2-bound on the second fundamental form satisfying
(CA). This is possible at all points where there is no energy con-
centration. More precisely, one obtains the following theorem.

Theorem 7.13. Let ~Φk ∈ EΣ be a sequence of weak Willmore
immersions, which satisfies the compactness assumption (CA)
and

sup
k

I(~Φk) <∞.

Let ~ξ∞ be the weak limit of a subsequence of ~Φk in the sense of
Definition 5.1, which exists due to Theorem 5.3.

Then ~ξ is weakly Willmore away from its blow-up points.
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8 A minimization procedure for the Willmore

energy among weak branched immersions

We will now merge the compactness theorem from Section 6 and
the regularity theorem from Section 7.2 in order to present a
general approach for minimizing Willmore energy under various
constraints.

The first one is the topological constraint that Σ (or in other
words the genus) is prescribed. We shall give a new proof of the
following classical result which has originally been derived with
different techniques ([Sim93],[BK03]).

Theorem 8.1. Let Σ be a closed, orientable 2-dimensional smooth
manifold. Then

inf
~Φ∈EΣ

W (~Φ)

is achieved by a smooth embedding.

Proof. We present the proof for m = 3.
Because of the closure theorem 6.9, it is natural to work in

FΣ, the class of weak branched immersions, instead of EΣ. We
thus take a minimizing sequence ~Φk ∈ FΣ, i.e. satisfying

W (~Φk)↘ inf
~Φ∈FΣ

W (~Φ).

In order to be able to apply Theorem 6.9 and extract a weakly
convergent subsequence, we need that the sequence ~Φk satisfies
the compactness assumption (CA). To see this, we note two
facts:

i) For every genus g there exists a smooth immersion ~Φ: Σg →
R3 such that W (~Φ) < 8π (for m = 3 see e.g. [Kus89]).
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ii) If a sequence ~Φk ∈ EΣ satisfies W (~Φk) < min{8π, ω3
g},

it meets the compactness assumption (CA) (see [Riv13],
where also Simon’s definition of ωng is recalled). For our

purposes, it is sufficient to know that inf~Φ∈FΣ
W (~Φ) < ωng .

This follows in particular from [BK03].

From i) follows that for sufficiently large k, we have

W (~Φk) < 8π.

The Li-Yau inequality (5.27) and Lemma 6.1 imply that any
~Φ ∈ FΣ with W (~Φ) < 8π is in fact a weak embedding, i.e.
there are neither branch points nor multiple points. Thus we
can assume that ~Φk ∈ EΣ.

By ii) (and again i)) we can assume that ~Φk satisfy (CA).
Now we can apply Theorem 6.9, which gives us a weakly con-
vergent subsequence with limit ~ξ∞ ∈ F conf

Σ . By lower semiconti-
nuity of the Willmore functional (Lemma 5.2), we get W (~ξ∞) =
inf~Φ∈FΣ

W (~Φ). As above, by Li-Yau and the branch point lemma,

we deduce that ~ξ∞ is actually in EΣ and does not have multiple
points. Furthermore,

W (~ξ∞) = min
~Φ∈FΣ

W (~Φ) = min
~Φ∈EΣ

W (~Φ). (8.1)

To conclude the proof one uses the following lemma, which is
proven in [MR13] for weak immersions from S2 into a Rieman-
nian manifold.

Lemma 8.2 ([MR13], Lemma IX.5). Let ~ξ ∈ EΣ be a conformal
weak immersion. Then W is Fréchet differentiable at ~ξ with
respect to variations ~w ∈ W 1,∞ ∩W 2,2(Σ,R3).
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We apply Lemma 8.2 to the conformal weak immersion ~ξ∞ ∈
EΣ. Note that for small δ, variations of the form ~ξ∞ + ~w, for
‖~w‖W 1,∞∩W 2,2(Σ) ≤ δ, are still elements of EΣ. Thus, (8.1) implies
that

dW~ξ∞
= 0.

Corollary 7.3 implies that

div
[
−2∇H~ξ ~n~ξ +H~ξ∇~n~ξ − ~H~ξ ×∇

⊥~n~ξ

]
= 0.

The regularity theorem 7.11 implies that ~ξ ∈ C∞. The fact that
~ξ is an embedding was noted before. This finishes the proof.
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